Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function such that for any $x,y\in\mathbb{R}$ $f(x+y)=f(x)+f(y)$. Prove/Disprove $f$ must be continuous.
Proof We have $\lim_{x\rightarrow a}f(x)=f(a)$ for some $a\in\mathbb{R}.$ Then, Then, we want to prove $\lim_{x\rightarrow t}f(x)=f(t)$ for any $t\in\mathbb{R}.$ So
$$\lim_{x\rightarrow t}f(x)=\lim_{x\rightarrow a}f(x-a+t)=\lim_{x\rightarrow a}f(x)-f(a)+f(t)=f(a)-f(a)+f(t)=f(t)$$
for any $t\in\mathbb{R}.$
I have a question that: why we have $\lim_{x\rightarrow a}f(x)=f(a)$ for some $a\in\mathbb{R}.$ How do you know this? Can you explain? Thanks...**