Let $R$ be a ring and $M$ an $R$-module. Suppose that $\{M_i\}_{i\in I}$ is a (possibly infinite) collection of simple submodules of $M$, which are pairwise isomorphic. Suppose that $M$ is the direct sum of $\{M_i\}_{i\in I}$. Suppose further that $M$ is also the direct sum of $\{K_j\}_{j\in J}$, where each $K_j$ is a simple submodule of $M$.
I can prove that each $K_j$ is isomorphic to each $M_i$. However, is it true that $I$ and $J$ are of the same cardinality? If so, I'd appreciate a direct proof (using basic equivalent definitions of a semisimple module is fine).