I'm learning calculus and I saw the following statement:
If $|a|+1>0$ then $\sqrt{|a|+1}>0$. By same logic we get $\sqrt{|b|+1}>0$. Then we get $\sqrt{|a|+1}+\sqrt{|b|+1}>0$.
I don't understand why $\sqrt{|a|+1}>0$. It could be a negative number no? For example if $a=3$ then we get $\sqrt{|3|+1}=\pm2$.