$V=X \oplus Y$ if every vector in $V$ can be written uniquely as $v=x+y$ for $x \in X$ and $y \in Y$.
Suppose $V=X \oplus Y$. We want to show $X \cap Y =\{0\}$. Suppose not. Let $v \in X \cap Y$. Then $v=v+0$ where $v \in X$ and $0 \in Y$. Also, $v=0+v$ where $0 \in X$ and $v \in Y$. Thus, $v$ cannot be written uniquely.
Is this proof sufficient?