The answers to multiplicative inverses modulo a prime can be found without using the extended Euclidean algorithm.
a. $8^{-1}\bmod17=8^{17-2}\bmod17=8^{15}\bmod17=15\bmod17$
b. $5^{-1}\bmod23=5^{23-2}\bmod23=5^{21}\bmod23=14\bmod23$
c. $60^{-1}\bmod101=60^{101-2}\bmod101=60^{99}\bmod101=32\bmod101$
d. $22^{-1}\bmod211=22^{211-2}\bmod211=22^{209}\bmod211=48\bmod211$
The above is using Fermat's little theorem to find the multiplicative inverse of some modular functions. However, there is a final step just before arriving at the answer that I do not understand how to solve, except to solve it by factoring. Factoring takes a very long time.
Basically, I don't see how the answers move from the third step to the fourth step aside from arriving at the answer by factoring. There has to be a better way using Fermat's Theorem or Euler's Theorem.