It is known that
For a cyclic group $C_n = \langle g \rangle$ of order $n$, we have $\langle g^k \rangle = \langle g^{(k, n)} \rangle$, where $k \in \mathbb{Z}$.
I am able to verify this result. Now, I try to derive it by showing something like
If $\langle g^k \rangle = \langle g^l \rangle$, then we have $l = (k, n)$ (in terms of "mod n").
$\langle g^k \rangle = \langle g^l \rangle$ means that $g^k \in \langle g^l \rangle$ and $g^l \in \langle g^k \rangle$.
That is, $\exists t \in \mathbb{Z}: g^k = g^{lt}$ and $\exists s \in \mathbb{Z}: g^l = g^{ks}$.
Therefore, $k \equiv lt \; (\text{mod}\; n)$ and $l \equiv ks \; (\text{mod}\; n)$.
How to proceed with this argument?