2

I have to solve $x$ given the next three equations:$x=2\mod 7$, $x=3\mod 11$ and $x=4\mod 13$.

What I tried: first try to find $x$ that satisfies the first two equations. There are $a,b\in \mathbb Z$ such that $7a+11b=1$. So $x=21a+22b$. Then I thought that if I add a multiple of $77$ to $x$, then $x\mod 77$ won't change. But here I got stuck.

Thank you.

Amzoti
  • 56,093
Badshah
  • 2,976

1 Answers1

2

$\rm mod\ 11,13\!:\,\ 2x\equiv -5$ $\iff$ $\rm mod\ 143=11\cdot 13\!:\,\ 2x\equiv -5\equiv 138\!\iff\! x\equiv 69.\ $ Therefore, applying $ $ Easy CRT $ $ to solve $\rm\ x\equiv 69\,\ (mod\ 143),\ \ x\equiv \color{#C00}2\,\ (mod\ 7)\ $ yields

$$\rm mod\,\ 7\cdot 11\cdot 13\!:\,\ x\,\equiv\, 69 + 143\left[\dfrac{\color{#C00}2\!-\!69}{143}\ mod\ 7\right]\equiv 212,\ \ \ by\ \ \ mod\ 7\!:\,\ \dfrac{2-69}{143}\,\equiv\, \dfrac{3}3 \,\equiv\, 1$$

Math Gems
  • 19,574