I'm trying to evaluate an integral of the form:
$$I\equiv \int_{-\infty}^{\infty}dx\space f(x)\int_{-\infty}^{\infty}dy\space h(y)\int_{-\infty}^{\infty}d\omega\space\omega e^{i\omega(x-y)}$$
with $f(x)$ and $h(y)$ analytic functions of $x$ and $y$, respectively.
I have two separate questions that will be presented as I go over what I did.
Option 1:
Noting that
$$\int_{-\infty}^{\infty}d\omega\space\omega e^{i\omega(x-y)}=2\pi i\frac{d}{dx}\delta(x-y)$$
we can go on and write $$I=2\pi i\int_{-\infty}^{\infty}dy\space h(y)\int_{-\infty}^{\infty}dx\space f(x)\frac{d}{dx}\delta(x-y)$$ $$=-2\pi i\int_{-\infty}^{\infty}dy\space h(y)\int_{-\infty}^{\infty}dx\space \frac{d}{dx}f(x)\delta(x-y)\color{lightgrey}{+2\pi i\space h(x)f(x)\vert^{\infty}_{-\infty}}$$ $$=-2\pi i\int_{-\infty}^{\infty}dx\space h(x)\frac{d}{dx}f(x)\color{lightgrey}{+2\pi i \space h(x)f(x)\vert^{\infty}_{-\infty}}$$
where I used integration by parts,
$$\int_{-\infty}^{\infty}dx\space f(x)\frac{d}{dx}\delta(x-y)=f(x)\delta(x-y)\vert^{\infty}_{-\infty}-\int_{-\infty}^{\infty}dx\space \frac{d}{dx}f(x)\delta(x-y)$$
and the term in grey corresponds to my first question.
First question: Is it correct to set $$\int_{-\infty}^{\infty} dy\space h(y)(f(x)\delta(x-y)\vert^{\infty}_{-\infty})=0$$ , arguing that $\int_{-\infty}^{\infty}=\lim_{a\to\infty}\int_{-a}^{a}$ and using the fact the integrand vanishes for any finite $y$?
Or rather, the fact that this is integrated over $y$ from $-\infty$ to $\infty$ yields something like $$\int_{-\infty}^{\infty} dy\space h(y)(f(x)\delta(x-y)\vert^{\infty}_{-\infty})=h(x)f(x)\vert^{\infty}_{-\infty}$$ ? For this case, I added the grey terms. These terms disappear if the boundary term vanishes, that is the first case I presented. As I'm not convinced which one is correct, I will carry the grey terms along, remembering their source. However, this won't affect the next question I'm about to get to.
Option 2:
Now, let's repeat this calculation by replacing the roles of $x$ and $y$. That is, noting that:
$$\int_{-\infty}^{\infty}d\omega\space\omega e^{i\omega(x-y)}=-2\pi i\frac{d}{dy}\delta(x-y)$$
we can go on and write $$I=-2\pi i\int_{-\infty}^{\infty}dx\space f(x)\int_{-\infty}^{\infty}dy\space h(y)\frac{d}{dy}\delta(x-y)$$ $$=2\pi i\int_{-\infty}^{\infty}dx\space f(x)\int_{-\infty}^{\infty}dy\space \frac{d}{dy}h(y)\delta(x-y)\color{lightgrey}{-2\pi i\space h(x)f(x)\vert^{\infty}_{-\infty}}$$ $$=2\pi i\int_{-\infty}^{\infty}dx\space f(x)\frac{d}{dx}h(x)\color{lightgrey}{-2\pi i\space h(x)f(x)\vert^{\infty}_{-\infty}}$$
To sum up, I'll denote the two results by: $$S_1=-2\pi i\int_{-\infty}^{\infty}dx\space h(x)\frac{d}{dx}f(x)\color{lightgrey}{+2\pi i \space h(x)f(x)\vert^{\infty}_{-\infty}}$$ $$S_2=2\pi i\int_{-\infty}^{\infty}dx\space f(x)\frac{d}{dx}h(x)\color{lightgrey}{-2\pi i\space h(x)f(x)\vert^{\infty}_{-\infty}}$$
Using integration by parts, we find a relation between the two results:
$$S_1=-2\pi i\int_{-\infty}^{\infty}dx\space h(x)\frac{d}{dx}f(x)\color{lightgrey}{+2\pi i \space h(x)f(x)\vert^{\infty}_{-\infty}}$$
$$=2\pi i\int_{-\infty}^{\infty}dx\space f(x)\frac{d}{dx}h(x)-2\pi i \space h(x)f(x)\vert^{\infty}_{-\infty}\color{lightgrey}{+2\pi i \space h(x)f(x)\vert^{\infty}_{-\infty}}$$
If the grey terms are correct, this amounts to:
$$S_1=S_2+2\pi i \space h(x)f(x)\vert^{\infty}_{-\infty}$$
If the grey terms are redundant, this amounts to:
$$S_1=S_2-2\pi i \space h(x)f(x)\vert^{\infty}_{-\infty}$$
In any case, these results are different!
Second question:
Seems like we got different results using the two options, based on how we choose to represent the integral over $\omega$: a derivative of a delta function with respect to $x$, or rather, $y$.
What is the source of this contradiction? What is the correct result of the integration?