I started with
$$x=(-16)^{\frac{1}{2}}$$
$$x=(-16)^{\frac{2}{4}}$$
Since $$(a^m)^n=a^{mn}$$ we have:
$$x=((-16)^2)^{\frac{1}{4}}$$
$$x=((16^2)^{\frac{1}{4}}$$
$$x=\sqrt{16}=4$$
Hence $$(-16)^{\frac{1}{2}}=4i=4$$
$$i=1$$
I started with
$$x=(-16)^{\frac{1}{2}}$$
$$x=(-16)^{\frac{2}{4}}$$
Since $$(a^m)^n=a^{mn}$$ we have:
$$x=((-16)^2)^{\frac{1}{4}}$$
$$x=((16^2)^{\frac{1}{4}}$$
$$x=\sqrt{16}=4$$
Hence $$(-16)^{\frac{1}{2}}=4i=4$$
$$i=1$$
The rule $(a^b)^c = a^{bc}$ does not hold in general except in special situations such as:
For example: $((-1)^2)^{1/2} = 1$, but $(-1)^{2\cdot 1/2}=-1$.
Or: $(e^{2\pi i})^{i} = 1^i = 1$, but $e^{2\pi i\cdot i} = e^{-2\pi} \approx 0.002$.
The imaginary numbers invalidate some of the usual rules on the exponents.
In the first place,
$$i^2<0.$$
For positives a and b, $\sqrt{-a} \sqrt{-b} \not = \sqrt{ab} $ But, $\sqrt{-a} \sqrt{-b} = - \sqrt{ab} $