By definition, if $A$ is a $ n \times n $ matrix, an inverse of $A$ is an $ n \times n $ matrix $A^{-1}$ with the property that:
$$ A^{-1}A=\mathbb I_n \ \ \land \ \ AA^{-1}=\mathbb I_n \ \ \ \ (1)$$
where $ \mathbb I_n $ is the $ n \times n $ identity matrix.
Are there any cases where $ A^{-1}A=\mathbb I_n$ but $AA^{-1} \neq \mathbb I_n$ or the other way around (and thus making (1) a false statement) ?