We start proving by Induction in the meta-theory:
$\forall z \ [(\text m < \text n ∧ \text n < z) → (\text m < z)]$.
Basis : $z=0$.
We assume $(\text m < \text n ∧ \text n < 0)$; from it : $(\text n < 0)$.
From (Ax.Q9) we get : $\lnot (\text n < 0)$. Using tautology : $\lnot p \to (p \to q)$ we conclude with :
$(\text m < 0)$.
Induction step : let assume $(\text m < \text n ∧ \text n < z) → (\text m < z)$.
Assume : $(\text m < \text n ∧ \text n < s(z))$. From it we get : $(\text n < s(z))$.
Using (Ax.Q10) we get : $(\text n < z) \lor (\text n = z)$.
Two cases : (a) $(\text n < z)$.
With $(\text m < \text n)$ and Induction Hyp we get : $(\text m < z)$.
(b) $(\text n = z)$. Again, using $(\text m < \text n)$ and axioms for equality we get : $(\text m < z)$.
From $(\text m < z)$ we get $(\text m < z) \lor (\text m = z)$.
Using (Ax.Q10) we get : $(\text m < s(z))$.
Thus, we conclude with :
$(\text m < \text n ∧ \text n < s(z)) \to (\text m < s(z))$.
In this way, we have proved by Induction :
$\forall z \ [(\text m < \text n ∧ \text n < z) \to (\text m < z)]$.
By Generalization, we have :
$\forall x \ \forall y \ \forall z \ [(x < y ∧ y < z) \to (x < z)]$.