Ah yes, the reverse triangle inequality, appealing to the intuition insofar as it confirms that the absolute difference in the magnitudes $\vert x \vert$, $\vert y \vert$ of $x$ and $y$ is bounded by their difference $\vert x - y \vert$ itself: if $x$ is close to $y$, then the size of $x$ is close to the size of $y$:
$\vert \vert x \vert - \vert y \vert \vert \le \vert x - y \vert; \tag 0$
since our OP Ash's work on proving this has been adequately debriefed in the comments to the question itself, I simply present my own demonstration, merely a re-iteration of a very standard approach:
$\vert y \vert = \vert x + y - x \vert \le \vert x \vert + \vert y - x \vert = \vert x \vert + \vert x - y \vert; \tag 1$
so
$\vert y \vert - \vert x \vert \le \vert x - y \vert; \tag 2$
we may reverse the roles of $x$ and $y$ in the above we obtain
$\vert x \vert - \vert y \vert \le \vert x - y \vert; \tag 3$
we may multiply (2) by $-1$ and find
$-\vert x - y \vert \le \vert x \vert - \vert y \vert; \tag 4$
we combine (3) and (4):
$-\vert x - y \vert \le \vert x \vert - \vert y \vert \le \vert x - y \vert, \tag 5$
which by definition is equivalent to
$\vert \vert x \vert - \vert y \vert \vert \le \vert \vert x - y \vert \vert = \vert x - y \vert. \tag 6$
$OE\Delta$.