Finding value of $\lim_{n\rightarrow \infty}\sqrt[n]{\frac{(27)^n(n!)^3}{(3n)!}}$
what i try
$\displaystyle l=\lim_{n\rightarrow \infty}\bigg(\frac{(27)^n(n!)^3}{(3n)!}\bigg)^{\frac{1}{n}}$
$\displaystyle \ln(l)=\lim_{n\rightarrow \infty}\frac{1}{n}\bigg[n\ln(27)+3\ln(n!)-\ln((3n)!)\bigg]$
How do i solve it help me please