Using a component-wise approach (using partial derivatives), show that the gradient of $f$ is given by te following formulas
\begin{align*} \nabla f(x) &= \frac{1}{2}(A +A^T)x + b\\ \end{align*}
For $A\in \mathbb{R}^{n\times n}$, $b\in \mathbb{R}^n$, $x\in \mathbb{R}^n$ We note $A = (a_{ij})_{\substack{ 1\leq i\leq n \\ 1\leq j\leq n}}$, $b = (b_i)_{1\leq i \leq n}$, $x = (x_i)_{1\leq i \leq n}$
Then $$f(x) = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}x_i a_{ij}x_j + \sum_{i=1}^{n}b_i x_i$$
$$ \nabla f(x) = \big(\frac{\partial f}{\partial x_i}(x)\big)_{1\leq i \leq n} $$
\begin{align*} \forall k\leq n: \frac{\partial f}{\partial x_k}(x) &=\frac{1}{2} = \big[\sum_{i\neq k}x_i a_{ik} + \sum_{j\neq k}a_{kj}x_j + 2a_{kk}x_k\big] + b_k \quad (1)\\ &=\frac{1}{2}\big[\sum_{i=1}^{n}x_ia_{ik} + \sum_{j=1}^{n}a_{kj}x_j\big] + b_k \quad (2)\\ x_i &=\frac{1}{2} \big[\sum_{i=1}^{n}a_{ik} x_i+ \sum_{j=1}^{n}a_{kj}x_j\big] + b_k \\ &=\frac{1}{2}\big[\sum_{i=1}^{n}a_{ik} + a_{kj} x_i\big] + b_k \\ \nabla f(x) &= \frac{1}{2}(A +A^T)x + b\ \end{align*}
Here are my questions - what does exactly the $k$ represent in (1) and why can't it be equal to $i$? - how can we go from (1) to (2) and from $\sum_{i\neq k}$ to $\sum_{i=1}^{n}$