Since I didn't quite understand some of the details of awkward's answer, I computed the probabilities by modelling the process as an inhomogeneous Markov chain with the $5$ absorbing states: $5$ aces first, $5$ kings first, $5$ queens first and $5$ jacks first, and $5^4$ non-absorbing states: $\ j_1\ \mathrm{aces,}$ $j_2\ \mathrm{kings,}$ $j_3\ \mathrm{queens,}$ and $j4\ \mathrm{jacks}$, for $\ j_i\in \{0,1,2,3,4\}$. I got exactly the same numbers he did for aces and jacks to be the first to five. The probabilities for all four cards being first to five were: \begin{eqnarray}
\mathrm{aces} &:& 0.00194347\\
\mathrm{kings} &:& 0.00824479\\
\mathrm{queens} &:& 0.07001983\\
\mathrm{jacks} &:& 0.91979191
\end{eqnarray}
Details of the Markov chain
Let $\ T_{t,c}\ $ be the probability that the process has terminated by step $\ t\ $ with $\ 5\ $ of card $\ c\ $, $\ t=0,1,\dots,17\ $, and $\ c=1,2,3,4\ $ indicating ace, king, queen and jack respectively. Since $\ 17\ $ cards will have been drawn after step $\ 17\ $, there must be $\ 5\ $ cards of one of the denominations, so $\ \sum_{c=1}^4 T_{17,c}=1\ $, and $\ T_{17,1}\ $ is the probability that that denomination is the ace.
Let $\ P_t\left(j_1,j_2,j_3,j_4\right)\ $ be the probability that after step $\ t\ $ there are $\ j_1\ $ aces, $\ j_2\ $ kings, $\ j_3\ $ queens and $\ j_4\ $ jacks in the hand drawn. For convenience in the the following description, extend the domain of definition of $\ P_t\left(j_1,j_2,j_3,j_4\right)\ $ to include quadruples $\ j_1, j_2, j_3, j_3\ $ of which any member, or combination of mmbers, can take the value $\ -1\ $, by putting $\ P_t\left(j_1,j_2,j_3,j_4\right)= 0\ $ whenever that is the case.
Initially, we have $\ T_{0,c} = 0\ $ for all $\ c\ $, $\ P_0\left(0,0,0,0\right)=1\ $, and $\ P_0\left(j_1,j_2,j_3,j_4\right)=0\ $ if any $\ j_i\ne 0\ $, and
\begin{eqnarray}
P_{t+1}\left(j_1,j_2,j_3,j_4\right) = \frac{6-j_1}{40-t} &P_t&\left(j_1-1,j_2,j_3,j_4\right)+\frac{7-j_2}{40-t}P_t\left(j_1,j_2-1,j_3,j_4\right)\\
&+&\frac{10-j_3}{40-t} P_t\left(j_1,j_2,j_3-1,j_4\right)+\frac{21-j_4}{40-t} P_t\left(j_1,j_2,j_3,j_4-1\right)\ ,
\end{eqnarray}
\begin{eqnarray}
T_{t+1,1} &=& T_{t,1}+\left(t-40\right)^{-1}\sum_{j_2=0}^{\mathrm{min}(4,t-4)}\sum_{j_3=0}^{\mathrm{min}(4,t-j_2-4)}P_t\left(4,j_2,j_3,t-j_3-j_2-4\right)\\
T_{t+1,2} &=& T_{t,2}+\frac{2}{t-40}\sum_{j_1=0}^{\mathrm{min}(4,t-4)}\sum_{j_3=0}^{\mathrm{min}(4,t-j_1-4)}P_t\left(j_1,4,j_3,t-j_3-j_1-4\right)\\
T_{t+1,3} &=& T_{t,3}+\frac{5}{t-40}\sum_{j_1=0}^{\mathrm{min}(4,t-4)}\sum_{j_2=0}^{\mathrm{min}(4,t-j_1-4)}P_t\left(j_1,j_2,4,t-j_2-j_1-4\right)\\
T_{t+1,4} &=& T_{t,4}+\frac{16}{t-40}\sum_{j_1=0}^{\mathrm{min}(4,t-4)}\sum_{j_2=0}^{\mathrm{min}(4,t-j_1-4)}P_t\left(j_1,j_2,t-j_2-j_1-4,4\right)
\end{eqnarray}