There is a atlas with only two charts. These are obtained by stereographic projection of $S^n \subset \mathbb{R}^{n+1}$ from the points $(0,0,...,1)$ and $(0,0,...,-1)$ onto the plane $z^{n+1} = 0$. Suppose $U$ and $U'$ are the punctured spheres obtained from $S^n$ by omitting these two points respectively. The functions
$$y:U \to \mathbb{R}^n , \qquad y':U' \to \mathbb{R}^n$$
defined by
$$y^i (z)= \dfrac{z_i}{1 - z_{n+1}}, \qquad y'^i (z)= \dfrac{z_i}{1 + z_{n+1}}$$
are both injections onto $\mathbb{R}^n$ and they are charts for $S^n$.
Let $f:\mathbb{R}\to \mathbb{R}$ be a differentiable function such that $f>0$ on $s>0$ and $f=0$ on $s\leq 0$. Put $g := f(r^2 - \|y(z)\|^2)$, $g' := f(r^2 - \|y'(z)\|^2)$, $h:= g \circ y$ and $h':= g' \circ y'$ where $r>1$. Then we get
$$h(z) =
\begin{cases}
f(\frac{r^2 -1 - (r^2 + 1)z_{n+1}}{1 - z_{n+1}}) & \text{if -1 $\leq z_{n+1}< \frac{r^2 - 1}{r^2 + 1}$}\\
0 & \text{if $\frac{r^2 - 1}{r^2 + 1}\leq z_{n+1}$ < 1 }
\end{cases},$$
and
$$h'(z) =
\begin{cases}
f(\frac{r^2 -1 + (r^2 + 1)z_{n+1}}{1 + z_{n+1}}) & \text{if $-\frac{r^2 - 1}{r^2 + 1}< z_{n+1}\leq$ 1}\\
0 & \text{if -1< $z_{n+1}\leq -\frac{r^2 - 1}{r^2 + 1}$}
\end{cases}.$$
Now we define $\phi := \frac{h}{h + h'}$ and $\phi' := \frac{h'}{h + h'}$. Therefore
$$\phi(z) =
\begin{cases}
1 & \text{if -1 $\leq z_{n+1}\leq -\frac{r^2 - 1}{r^2 + 1}$}\\
\frac{h(z)}{h(z) + h'(z)} & \text{if $-\frac{r^2 - 1}{r^2 + 1} < z_{n+1} < \frac{r^2 - 1}{r^2 + 1}$}\\
0 & \text{if $\frac{r^2 - 1}{r^2 + 1}\leq z_{n+1} \leq$ 1}
\end{cases},$$
and
$$\phi'(z) =
\begin{cases}
0 & \text{if -1 $\leq z_{n+1}\leq -\frac{r^2 - 1}{r^2 + 1}$}\\
\frac{h'(z)}{h(z) + h'(z)} & \text{if $-\frac{r^2 - 1}{r^2 + 1} < z_{n+1}< \frac{r^2 - 1}{r^2 + 1}$}\\
1 & \text{if $\frac{r^2 - 1}{r^2 + 1}\leq z_{n+1} \leq$ 1 }
\end{cases}.$$
Then we obtain the partition of unity $\{(U, \phi) , (U' , \phi')\}$ on $S^n$.