- If integers $a$ and $b$ are not both zero, then $\gcd(a,b)=\gcd(a-b,b)$
Assume either $a=0$ or $b=0$. If $a=0$, then $\gcd(a,b)=\gcd(0,b)=b$ and $\gcd(a-b,b)=\gcd(-b,b)=-b$, so $\gcd(a,b)\neq\gcd(a-b,b)$.
If $b=0$, then $\gcd(a,b)=\gcd(a,0)=0$ and $\gcd(-b,b)=\gcd(a,0)=0$.
So, what can I say? Can you help? Can you check my proof-trying?