Let $x$ be positive and $$ a_n = \left( 1 + \frac{x}{n} \right)^n \qquad b_n = \left( 1 - \frac{x}{n} \right)^{-n}. $$ Show that
a) The sequence $(a_n)$ and $(b_n)$ have the same limit $\xi =: \operatorname{Exp}(x)$. Use the following steps
i) $a_n < b_n$ for all $n \in \mathbb{N}$ with $n > x$.
ii) for $n > x$, $(a_n)$ is monotone increasing, and $(b_n)$ monotone decreasing.
iii) $b_n - a_n \to 0$ for $n \to \infty$.
b) For $y = -x < 0$ $$ \lim_{n\to \infty}\left( 1 + \frac{y}{n} \right)^n = \frac{1}{Exp(x)} $$
Item ii) is simple, because $0 < \frac{x}{n} < 1$, obvisouly $a_n$ increasing. But for the rest I have no idea...