Given $z\in\mathbb{C}$ with $|z|=1$, then prove that the equation $\Big(\dfrac{1+ia}{1-ia}\Big)^4=z$ has all roots real and distinct
My Attempt $$ z=e^{i\theta}\implies z^{1/4}=e^{i\theta/4}=\frac{1+ia}{1-ia}.1^{1/4}=\frac{1+ia}{1-ia}.(1,-1,i,-i) $$ Is it correct to introduce the quadratic root of unity for the complete solution ?
Case 1: $1^{1/4}=1$ $$ \frac{1}{ia}=\frac{e^{i\theta/4}+1}{e^{i\theta/4}-1}=\frac{2\cos^2\theta/8+2i\sin\theta/8.\cos\theta/8}{-2\sin^2\theta/8+2i\sin\theta/8.\cos\theta/8}\\ \frac{1}{ia}=i\cot\theta/8\\\boxed{a=-\tan\theta/8} $$ Case 2: $1^{1/4}=-1$ $$ \frac{1}{ia}=\frac{-e^{i\theta/4}+1}{-e^{i\theta/4}-1}=\frac{2\sin^2\theta/8-2i\sin\theta/8.\cos\theta/8}{-2\cos^2\theta/8-2i\sin\theta/8.\cos\theta/8}\\ \frac{1}{ia}=i\tan\theta/8\implies\boxed{a=-\cot\theta/8} $$ Case 3: $1^{1/4}=-i$ $$ \frac{1}{ia}=\frac{ie^{i\theta/4}+1}{ie^{i\theta/4}-1}=\frac{1-\sin\theta/4+i\cos\theta/4}{-1-\sin\theta/4+i\cos\theta/4}\\ =\frac{1-\cos(\pi/2-\theta/4)+i\sin(\pi/2-\theta/4)}{-1-\cos(\pi/2-\theta/4)+i\sin(\pi/2-\theta/4)}\\ =\frac{2\sin^2(\pi/4-\theta/8)+2i\sin(\pi/4-\theta/8)\cos(\pi/4-\theta/8)}{-2\cos^2(\pi/4-\theta/8)+2i\sin(\pi/4-\theta/8)\cos(\pi/4-\theta/8)}\\ \frac{1}{ia}=-i\tan(\pi/4-\theta/8)\\ \boxed{a=\cot(\pi/4-\theta/8)=\tan(\pi/4+\theta/8)} $$ Case 4: $1^{1/4}=i$ $$ \frac{1}{ia}=\frac{-ie^{i\theta/4}+1}{-ie^{i\theta/4}-1}=\frac{1+\sin\theta/4-i\cos\theta/4}{-1+\sin\theta/4-i\cos\theta/4}\\ =\frac{1+\cos(\pi/2-\theta/4)-i\sin(\pi/2-\theta/4)}{-1+\cos(\pi/2-\theta/4)-i\sin(\pi/2-\theta/4)}\\ =\frac{2\cos^2(\pi/4-\theta/8)-2i\sin(\pi/4-\theta/8)\cos(\pi/4-\theta/8)}{-2\sin^2(\pi/4-\theta/8)-2i\sin(\pi/4-\theta/8)\cos(\pi/4-\theta/8)}\\ =i.\cot(\pi/4-\theta/8)\\ \frac{1}{ia}=i\tan(\pi/4+\theta/8)\\ \boxed{a=-\cot(\pi/4+\theta/8)} $$ Is it the right way to approach the problem ? and whats the easiest way to solve this ?