Every metric space is completely normal.
Let $(X,d)$ be a metric space. Our aim is to prove, For any subsets $A$ and $B$ of $X$ such that $\overline A\cap B=B\cap\overline A=\emptyset,$ We need to find two disjoint non-empty open subsets of $X$ such that $A\subseteq U$ and $B\subseteq V.$ Since, $A$ and $B$ are non-empty subset of $X$. we can find $\text{dist}(A,\overline{B})>0$ and $\text{dist}(B,\overline{A})>0$. Choose $d=\text{dist}(A,\overline{B})$. Let $U=\cup_{x\in U}B_d(x,d)$ and $U=\cup_{x\in A}B_d(x,d)$ and $V=\cup_{x\in \overline B}B_d(x,d): A\subseteq U$ and $B\subseteq V$. (Where $\text{dist}(A,\overline{B})=\inf\{d(x,y):x\in A \wedge x\in \overline{B}\} $). Is my proof correct?