We have a continuous and increasing function $f:[0,1]\to \mathbb R$ and the sequence $(a_n)_{n\ge1}$,$$a_n=\frac{1}{2^n}\sum_{k=1}^{2^n}f\biggl(\frac{k}{2^n}\biggl)$$ . Prove that $(a_n)_{n\ge1}$ is decreasing.
I got $$a_{n+1}=\frac{1}{2^{n+1}}\biggr( \sum_{k=1}^{2^n}f\biggl(\frac{k}{2^{n+1}}\biggl) +\sum_{k=2^n}^{2^{n+1}}f\biggl(\frac{k}{2^{n+1}}\biggl) \biggr)$$. On the solution they have$$a_{n+1}=\frac{1}{2^{n+1}}\biggr( \sum_{k=1}^{2^n}f\biggl(\frac{k}{2^n}\biggl) +\sum_{k=1}^{2^n}f\biggl(\frac{2k-1}{2^{n+1}}\biggl) \biggr)$$
and then they used $f(\frac{2k-1}{2^{n+1}})\le f(\frac{k}{2^n})$, which I don't understand both of them. Can somebody help me, please?