I am evaluating this function $A(z)$:
$A(z) = \iiint v_x \frac{\partial f_o}{\partial v_x}(1-e^{-\frac{z}{\tau v_z}} ) dv_x dv_y dv_z$
$v$ is a vector in v-space.
$\theta$ is the polar angle between vector $v$ and z-axis. $\phi$ is azimuthal angle.
I need to convert that into a polar coordinate $(v,\theta,\phi)$
my steps:
$A(z) = \int v \sin\theta\cos\phi \frac{\partial f_o}{\partial v \sin\theta\cos\theta}(1-e^{-\frac{z}{\tau v \cos\theta}} ) v^2 \sin\theta dv d\theta d\phi$
$A(z) = \int v \frac{\partial f_o}{\partial v }(1-e^{-\frac{z}{\tau v \cos\theta}} ) v^2 \sin\theta dv d\theta d\phi$
final result:
$A(z) = \int v^3 \frac{\partial f_o}{\partial v }(1-e^{-\frac{z}{\tau v \cos\theta}} ) \sin\theta dv d\theta d\phi$
the expected/correct result:
$A(z) = \int v^3 \frac{\partial f_o}{\partial v }(1-e^{-\frac{z}{\tau v \cos\theta}} ) \sin^3\theta \cos^2\phi dv d\theta d\phi$
It is like my answer multiplied by $\sin^2\theta \cos^2\phi$
I have some doubt in converting $dv_x dv_y dv_z$ into the direction in the polar coordinate $dv d\theta d\phi$
Can someone point my mistake here?
EDIT:
$\frac{\partial f_o}{\partial v_x} = \frac{\partial f_o}{\partial v} \frac{\partial v}{\partial v_x}$
$v_x = v \sin\theta\cos\phi$
$dv_x = dv \sin\theta\cos\phi $
$\frac{\partial f_o}{\partial v_x} = \frac{\partial f_o}{\partial v \sin\theta\cos\theta}$
EDIT 2:
- I wrote $\frac{\partial v_x}{\partial f_o}$
$$\frac{\partial v_x}{\partial f_o} = \sin\theta\cos\phi \frac{\partial v}{\partial f_o} + v\cos\theta\cos\phi \frac{\partial \theta}{\partial f_o}- v\sin\theta\sin\phi \frac{\partial \phi}{\partial f_o}$$
- (trying) find the inverse of this. I am not sure though.
determinant = $-v^2 \sin^2\theta \cos\theta \sin\phi \cos^2\phi$