Your problem can be written like this:
$$
\mathbf{x}_i = \begin{bmatrix} a_i \\ b_i \end{bmatrix} = \mathbf{A} \mathbf{x}_{i-1} \hspace{20mm} \mathbf{A} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}
$$
Assume you know $\mathbf{x}_0$. Then $\mathbf{x}_i = \mathbf{A}^i \mathbf{x}_0$.
Here are the first few values of $\mathbf{A}^n$.
$$
\mathbf{A}^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\
\mathbf{A}^1 = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \\
\mathbf{A}^2 = \begin{bmatrix} \alpha^2 + \beta\gamma & \alpha\beta + \beta\delta \\ \alpha\gamma + \gamma\delta & \beta\gamma + \delta^2 \end{bmatrix} \\
$$
I believe that for arbitrary $\alpha, \beta, \gamma, \delta$, you will need to compute $\mathbf{A}^n$ explicitly. See this post on how to calculate square matrix powers. If your matrix $\mathbf{A}$ satisfies a recurrence relation, then you can obtain a closed-form solution.