-1

Prove: ${^n}C_r + ^nC_{r+1} = ^{n+1}C_{r+1}$

I used $^nC_r = \frac{(n!)}{(n-r)!r!}$ and then did my substitutions:

$ = \frac{(n!)}{(n-r)!r!} + \frac{(n!)}{(n-(r+1))!(r+1)!}$

$ = \frac{(n!)}{(n-r)!r!} + \frac{(n!)}{(n-r-1)!(r+1)!}$

$=$

I am not sure how to do rest of the working out

3 Answers3

0

$$\frac{n!\cdot{(r+1)} +n!\cdot{(n-r)}}{(n-r)!\cdot{(r+1)!}}$$ $$=\frac{n!\cdot{(n+1)}}{((n+1)-(r+1))!\cdot{(r+1)!}} $$ $$=^{n+1}C_{r+1}$$

Abhinav
  • 450
0

A combinatorical way: Choose $r+1$ elements from a set of $n+1$ different element. This can be done in $\dbinom{n+1}{r+1}$ or we can count the ways to choose $r+1$ elements from the same set without the element $X$ and the ways to choose $r+1$ elements from the set where $X$ is part of these $r+1$ numbers, this can be done in $\dbinom{n}{r+1}+\dbinom{n}{r}$ . And since we are counting the same thing we are done.

-1

$$\begin{align} \binom n{k+1}+\binom n{k}&=\frac{n!}{(k+1)!(n-k-1)!}+\frac{n!}{k!(n-k)!}\\ &=\frac{n!}{(k+1)!(n-k-1)!}\left[1+\frac{k+1}{n-k}\right]\\ &=\frac{n!}{(k+1)!(n-k-1)!}\cdot\frac{n+1}{n-k}\\ &=\frac{(n+1)!}{(k+1)!(n-k)!}=\binom{n+1}{k+1}. \end{align} $$

user
  • 26,272