Let $a_{1}=a$ and $a_{n+1}=\cos(a_{n})\;\forall \;n\;\in \mathbb{N}.$
Then $\lim\limits_{n\rightarrow \infty}(a_{n+2}-a_{n})$ is
Try: $a_{n+2}=\cos(a_{n+1})=\cos(\cos(a_{n}))=\cos(\cos(\cos (a_{n-1})))=\cdots \cdots \cos(\cos\cos\cos(\cdots \cdots \cos(a)))))))$
Did not know how can i solve it, could some help me , Thanks