show the sequence has the limit 0, $x_n$=$\frac{10^{3n}}{n!}$
I started with:
$10^3$=1000
$x_1$=$\frac{10^{3(1)}}{1!}$=1000
$x_2$=$\frac{10^{3(2)}}{2!}$=500000>$x_1$
$x_3$=$\frac{10^{3(3)}}{3!}$=500000000/3>$x_2$
.
.
.
How do I show the limit actually does go to 0.