My initial solution (which I've deleted) was incorrect. Turns out this integral is much more difficult. Here is the work I've done (which is NOT a solution):
\begin{equation}
I= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{-\sin(x)}{1 + e^x}\:dx\nonumber
\end{equation}
Let us consider a more generalised form:
\begin{equation}
J(f(x), a) = \int_{-a}^{a} \frac{-f(x)}{1 + e^{x}}\:dx \nonumber
\end{equation}
Where $f(x)$ is odd, i.e. $f(x) = -f(-x)$. To address this integral we first split into:
\begin{equation}
J(f(x), a) = \int_{-a}^{0} \frac{-f(x)}{1 + e^{x}}\:dx + \int_{0}^{a} \frac{-f(x)}{1 + e^{x}}\:dx \nonumber
\end{equation}
Considering the first part, we make the substitution $x \mapsto -x$:
\begin{equation}
\int_{a}^{0} \frac{-f(-x)}{1 + e^{-x}}-\:dx = \int_{0}^{a} \frac{-f(-x)}{1 + e^{-x}}\:dx \nonumber
\end{equation}
As $f(x)$ is odd we have $f(-x) = -f(x)$, thus,
\begin{equation}
\int_{0}^{a} \frac{-f(-x)}{1 + e^{-x}}\:dx = \int_{0}^{a} \frac{f(x)}{1 + e^{-x}}\:dx \nonumber
\end{equation}
Now,
\begin{equation}
\frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}\nonumber
\end{equation}
And so,
\begin{equation}
\int_{0}^{a} \frac{f(x)}{1 + e^{-x}}\:dx = \int_{0}^{a} \frac{e^xf(x)}{1 + e^{x}}\:dx\nonumber
\end{equation}
Returning to $J(f(x),a)$ we have
\begin{align}
J(f(x), a) &= \int_{-a}^{0} \frac{f(x)}{1 + e^{x}}\:dx + \int_{0}^{a} \frac{f(x)}{1 + e^{x}}\:dx \nonumber \\
&= \int_{0}^{a} \frac{e^xf(x)}{1 + e^{x}}\:dx + \int_{0}^{a} \frac{-f(x)}{1 + e^{x}}\:dx \nonumber \\
&= \int_{0}^{a} \frac{e^{x}f(x) - f(x)}{e^x + 1}\:dx = \int_0^a \left(\frac{e^{x} - 1}{e^x + 1}\right)f(x)\:dx \nonumber
\end{align}
This is probably not of value for this specific integral.
Returning to $I$ we have
\begin{equation}
I = J\left(\sin(x), \frac{\pi}{2}\right) = \int_0^\frac{\pi}{2} \left(\frac{e^{x} - 1}{e^x + 1}\right)\sin(x)\:dx \nonumber
\end{equation}