An alternative "elementary" solution (no contour integral, no complex number actually)
Hold your breath !
\begin{align}\text{A}&=\int_0^1 \frac{x\ln(1-x)\ln(1+x^2)}{1+x^2}\,dx\\
\text{B}&=\int_0^1 \frac{x\ln(1+x)\ln(1+x^2)}{1+x^2}\,dx\\
\text{A+B}&=\int_0^1 \frac{x\ln(1-x^2)\ln(1+x^2)}{1+x^2}\,dx\\
\end{align}
Perform the change of variable $\displaystyle y=x^2$,
\begin{align}
\text{A+B}&=\frac{1}{2}\int_0^1 \frac{\ln(1-x)\ln(1+x)}{1+x}\,dx\\
&=\frac{1}{4}\int_0^1 \frac{\ln^2(1-x)}{1+x}\,dx+\frac{1}{4}\int_0^1 \frac{\ln^2(1+x)}{1+x}\,dx-\frac{1}{4}\int_0^1 \frac{\ln^2\left(\frac{1-x}{1+x}\right)}{1+x}\,dx\\
&=\frac{1}{4}\int_0^1 \frac{\ln^2\left(\frac{2x}{1+x}\right)}{1+x}\,dx+\frac{1}{4}\int_0^1 \frac{\ln^2(1+x)}{1+x}\,dx-\frac{1}{4}\int_0^1 \frac{\ln^2 x }{1+x}\,dx
\end{align}
In the first and the third integral perform the change of variable $y=\dfrac{1-x}{1+x}$,
\begin{align}
\text{A+B}&=\frac{1}{4}\int_0^1 \frac{\ln^2\left(\frac{2x}{1+x}\right)}{1+x}\,dx+\frac{1}{4}\int_0^1 \frac{\ln^2(1+x)}{1+x}\,dx-\frac{1}{2}\int_0^1 \frac{\ln^2 x }{1+x}\,dx\\
&=\frac{1}{4}\int_0^1 \frac{\ln^2(1+x)}{1+x}\,dx-\frac{1}{2}\int_0^1 \frac{\ln(1+x)\ln x}{1+x}\,dx-\frac{\ln 2}{2}\int_0^1 \frac{\ln(1+x)}{1+x}\,dx\\
&+\frac{1}{4}\int_0^1 \frac{\ln^2 x}{1+x}\,dx+\frac{\ln 2}{2}\int_0^1 \frac{\ln x}{1+x}\,dx+\frac{\ln^2 2}{4}\int_0^1 \frac{1}{1+x}\,dx+\frac{1}{4}\int_0^1 \frac{\ln^2(1+x)}{1+x}\,dx-\\
&\frac{1}{4}\int_0^1 \frac{\ln^2 x }{1+x}\,dx\\
&=\frac{1}{6}\ln^3 2-\frac{1}{2}\int_0^1 \frac{\ln(1+x)\ln x}{1+x}\,dx+\frac{1}{2}\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx
\end{align}
\begin{align}
\text{A-B}&=\int_0^1 \frac{x\ln\left(\frac{1-x}{1+x}\right)\ln(1+x^2)}{1+x^2}\,dx\\
\end{align}
Perform the change of variable $y=\dfrac{1-x}{1+x}$
\begin{align}
\text{A-B}&=\int_0^1 \left(\frac{1}{1+x}-\frac{x}{1+x^2}\right)\ln\left(\frac{2(1+x^2)}{(1+x)^2}\right)\ln x\,dx\\
&=\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx-\ln 2\int_0^1 \frac{x\ln x}{1+x^2}\,dx+\int_0^1 \frac{\ln x\ln(1+x^2)}{1+x}\,dx-\int_0^1 \frac{x\ln x\ln(1+x^2)}{1+x^2}\,dx-\\
&2\int_0^1 \frac{\ln x\ln(1+x)}{1+x}\,dx+ 2\int_0^1 \frac{x\ln x\ln(1+x)}{1+x^2}\,dx\\
\end{align}
In the second and the fourth integrals perform the change of variable $\displaystyle y=x^2$,
\begin{align}
\text{A-B}&=\frac{3}{4}\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx+\int_0^1 \frac{\ln x\ln(1+x^2)}{1+x}\,dx-\frac{9}{4}\int_0^1 \frac{\ln x\ln(1+x)}{1+x}\,dx+ 2\int_0^1 \frac{x\ln x\ln(1+x)}{1+x^2}\,dx\\
\end{align}
Define function $R$ on $[0;1]$ by:
\begin{align}R(x)&=\int_0^x \frac{\ln t}{1+t}\,dt\\
&=\int_0^1 \frac{x\ln(tx)}{1+tx}\,dt\\
\end{align}
Therefore,
\begin{align}
\text{C}&=\int_0^1 \frac{\ln x\ln(1+x^2)}{1+x}\,dx\\
&=\Big[R(x)\ln(1+x^2)\Big]_0^1 -\int_0^1 \int_0^1 \frac{2x^2\ln(tx)}{(1+tx)(1+x^2)}\,dt\,dx\\
&=\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx-\int_0^1 \int_0^1 \frac{2x^2\ln t}{(1+tx)(1+x^2)}\,dt\,dx-\int_0^1 \int_0^1 \frac{2x^2\ln x}{(1+tx)(1+x^2)}\,dt\,dx\\
&=\left(\int_0^1 \frac{2t\ln t\ln(1+t)}{1+t^2}\,dt-\int_0^1 \frac{2\ln t\ln(1+t)}{t}\,dt-\int_0^1 \frac{(\ln 2) t\ln t}{1+t^2}\,dt+\frac{\pi}{2}\int_0^1 \frac{\ln t}{1+t^2}\,dt\right)-\\
&\int_0^1 \frac{2x\ln x\ln(1+x)}{1+x^2}\,dx+\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx\\
&=\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx-2\int_0^1 \frac{\ln t\ln(1+t)}{t}\,dt-\ln 2\int_0^1 \frac{ t\ln t}{1+t^2}\,dt-\frac{1}{2}\pi\text{G}
\end{align}
(all the integrals have been computed using antiderivatives)
In the third integral perform the change of variable $\displaystyle y=t^2$,
\begin{align}
\text{C}&=\frac{3}{4}\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx-\Big[\ln^2t\ln(1+t)\Big]_0^1+\int_0^1 \frac{\ln^2 t}{1+t}\,dt-\frac{1}{2}\pi\text{G}\\
&=\frac{3}{4}\ln 2\int_0^1 \frac{\ln x}{1+x}\,dx+\int_0^1 \frac{\ln^2 t}{1+t}\,dt-\frac{1}{2}\pi\text{G}\\
\end{align}
Define function $S$ on $[0;1]$ by:
\begin{align}S(x)&=\int_0^x \frac{t\ln t}{1+t^2}\,dt\\
&=\int_0^1 \frac{tx^2\ln(tx)}{1+t^2x^2}\,dt\\
\end{align}
\begin{align}
\text{D}&=\int_0^1 \frac{x\ln x\ln(1+x)}{1+x^2}\,dx\\
&=\Big[S(x)\ln(1+x)\Big]_0^1-\int_0^1 \int_0^1\frac{tx^2\ln(tx)}{(1+t^2x^2)(1+x)}\,dt\,\,dx\\
&=\ln 2\int_0^1 \frac{x\ln x}{1+x^2}\,dx-\int_0^1 \int_0^1\frac{tx^2\ln t}{(1+t^2x^2)(1+x)}\,dt\,\,dx-\int_0^1 \int_0^1\frac{tx^2\ln x}{(1+t^2x^2)(1+x)}\,dt\,\,dx\\
&=\left(\int_0^1\frac{t\ln t\ln(1+t^2)}{2(1+t^2)}\,dt-\int_0^1\frac{\ln t\ln(1+t^2)}{2t}\,dt+\int_0^1\frac{\ln t\arctan t}{1+t^2}\,dt-\int_0^1\frac{(\ln 2)t\ln t}{1+t^2}\,dt\right)-\\
&\frac{1}{2}\int_0^1 \frac{\ln(1+x^2)\ln x}{1+x}\,dx+\ln 2\int_0^1 \frac{x\ln x}{1+x^2}\,dx\\
\end{align}
In the first, second, fourth, sixth integrals perform the change of variable $\displaystyle y=t^2$ (or $ \displaystyle y=x^2$),
\begin{align}
\text{D}&=\frac{1}{8}\int_0^1\frac{\ln t\ln(1+t)}{1+t}\,dt-\frac{1}{8}\int_0^1\frac{\ln t\ln(1+t)}{t}\,dt+\int_0^1\frac{\ln t\arctan t}{1+t^2}\,dt-\frac12 \text{C}\\
&=\frac{1}{8}\int_0^1\frac{\ln t\ln(1+t)}{1+t}\,dt-\frac{1}{16}\Big[\ln^2 t\ln(1+t)\Big]_0^1+\frac{1}{16}\int_0^1 \frac{\ln^2 t}{1+t}\,dt+\int_0^1\frac{\ln t\arctan t}{1+t^2}\,dt-\frac12 \text{C}\\
&=\frac{1}{8}\int_0^1\frac{\ln t\ln(1+t)}{1+t}\,dt+\frac{1}{16}\int_0^1 \frac{\ln^2 t}{1+t}\,dt+\int_0^1\frac{\ln t\arctan t}{1+t^2}\,dt-\frac12 \text{C}\\
\end{align}
Define function $T$ on $[0;1]$ by:
\begin{align}T(x)&=\int_0^x \frac{\ln t}{1+t^2}\,dt\\
&=\int_0^1 \frac{x\ln(tx)}{1+t^2x^2}\,dt\\
\end{align}
Observe that,
\begin{align}T(0)&=0\\
T(1)`&=-\text{G}
\end{align}
\begin{align}\text{E}&=\int_0^1\frac{\ln x\arctan x}{1+x^2}\,dx\\
&=\Big[T(x)\arctan x\Big]_0^1-\int_0^1\int_0^1 \frac{x\ln(tx)}{(1+x^2)(1+t^2x^2)}\,dt\,dx\\
&=-\frac{\text{G}\pi}{4}-\int_0^1\int_0^1 \frac{x\ln t}{(1+x^2)(1+t^2x^2)}\,dt\,dx-\int_0^1\int_0^1 \frac{x\ln x}{(1+x^2)(1+t^2x^2)}\,dt\,dx\\
&=-\frac{\text{G}\pi}{4}+\frac12\int_0^1 \frac{\ln t\ln\left(\frac{1+t^2}{2}\right)}{1-t^2}\,dt-E\\
\end{align}
Observe that for $t\in [0;1[$,
\begin{align}\frac{1}{1-t^2}=\frac{1}{1+t}+\frac{t}{1-t^2} \end{align}
Therefore,
\begin{align}E&=-\frac{\text{G}\pi}{4}-\frac{\ln 2}{2}\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac12\int_0^1 \frac{t\ln t\ln\left(1+t^2\right)}{1-t^2}\,dt+\frac{1}{2}\text{C}-\text{E}\end{align}
In the latter integral perform the change of variable $\displaystyle y=t^2$
\begin{align}E&=-\frac{\text{G}\pi}{4}-\frac{\ln 2}{2}\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac18\int_0^1 \frac{\ln t\ln\left(1+t\right)}{1-t}\,dt+\frac{1}{2}\text{C}-\text{E}\\
&=-\frac{\text{G}\pi}{4}-\frac{\ln 2}{2}\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac{\ln 2}{8}\int_0^1 \frac{\ln t}{1-t}\,dt+\frac18\int_0^1 \frac{\ln t\ln\left(\frac{1+t}{2}\right)}{1-t}\,dt+\\
&\frac{1}{2}\text{C}-\text{E}
\end{align}
In the latter integral perform the change of variable $y=\dfrac{1-t}{1+t}$,
\begin{align}E&=-\frac{\text{G}\pi}{4}-\frac{\ln 2}{2}\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac{\ln 2}{8}\int_0^1 \frac{\ln t}{1-t}\,dt-\\
&\frac18\int_0^1\left(\frac{1}{t}-\frac{1}{1+t}\right)\ln\left(\frac{1-t}{1+t}\right)\ln\left(1+t\right)\,dt+\frac{1}{2}\text{C}-\text{E}\\
&=-\frac{\text{G}\pi}{4}-\frac{\ln 2}{2}\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac{\ln 2}{8}\int_0^1 \frac{\ln t}{1-t}\,dt+\\
&\frac18\int_0^1 \frac{\ln\left(\frac{1-t}{1+t}\right)\ln\left(1+t\right)}{1+t}\,dx+\frac18\int_0^1 \frac{\ln^2\left(1+t\right)}{t}\,dt-\\
&\frac18\int_0^1 \frac{\ln\left(1+t\right)\ln\left(1-t\right)}{t}\,dt+\frac{1}{2}\text{C}-\text{E}\\
\int_0^1 \frac{\ln^2\left(1+t\right)}{t}\,dt&=\Big[\ln t\ln^2(1+t)\Big]_0^1-2\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt\\
&=-2\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt\\
F&=\int_0^1 \frac{\ln(1+t)\ln(1-t) }{t}\,dt\\
&=\frac12 \left(\int_0^1 \frac{t\ln^2(1-t^2) }{t^2}\,dt-\int_0^1 \frac{\ln^2(1-t) }{t}\,dt-\int_0^1 \frac{\ln^2(1+t) }{t}\,dt\right)\\
\end{align}
In the first integral perform the change of variable $\displaystyle y=1-t^2$,
In the second integral perform the change of variable $\displaystyle y=1-t$,
\begin{align}F&=\frac12 \left(2\int_0^1 \frac{\ln t\ln(1+t) }{1+t}\,dt-\int_0^1 \frac{\ln^2 t }{1-t}\,dt+\frac{1}{2}\int_0^1 \frac{\ln^2 t }{1-t}\,dt\right)\\
&=\int_0^1 \frac{\ln t\ln(1+t) }{1+t}\,dt-\frac14\int_0^1 \frac{\ln^2 t }{1-t}\,dt\\
H&=\int_0^1 \frac{\ln\left(\frac{1-t}{1+t}\right)\ln\left(1+t\right)}{1+t}\,dt
\end{align}
Perform the change of variable $y=\dfrac{1-t}{1+t}$,
\begin{align}H&=\int_0^1 \frac{\ln\left(\frac{2}{1+t}\right)\ln t}{1+t}\,dt\\
&=\ln 2\int_0^1 \frac{\ln t}{1+t}\,dt-\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt
\end{align}
Therefore,
\begin{align}2E&=-\frac{\text{G}\pi}{4}-\frac{\ln 2}{2}\int_0^1 \frac{\ln t}{1-t^2}\,dt+\frac{\ln 2}{8}\int_0^1 \frac{\ln t}{1-t}\,dt+\\
&\frac{1}{8}\left( \ln 2\int_0^1 \frac{\ln t}{1+t}\,dt-\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt\right)-\frac14\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt-\\
&\frac18\left( \int_0^1 \frac{\ln t\ln(1+t) }{1+t}\,dt-\frac14\int_0^1 \frac{\ln^2 t }{1-t}\,dt\right)+\frac{1}{2}\text{C}\\
E&=\frac{\text{C}}{4}-\frac{\text{G}\pi}{8}-\frac{\ln 2}{8} \int_0^1\frac{\ln t}{1-t^2}\,dt+\frac{1}{64} \int_0^1\frac{\ln^2 t}{1-t}\,dt-\frac14\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt \\
\end{align}
Therefore,
\begin{align}D&=\frac{1}{16} \int_0^1 \frac{\ln^2 t}{1+t}\,dt+\frac{1}{64} \int_0^1 \frac{\ln^2 t}{1-t}\,dt-\frac{1}{8} \int_0^1 \frac{\ln(1+t)\ln t}{1+t}\,dt-\\
&\frac{\ln 2}{8} \int_0^1 \frac{\ln t}{1-t^2}\,dt -\frac{\text{C}}{4}-\frac{\text{G}\pi} {8}\\
&=\frac{1}{64} \int_0^1 \frac{\ln^2 t}{1-t}\,dt-\frac{3}{16} \int_0^1 \frac{\ln^2 t}{1+t}\,dt-\frac{1}{8} \int_0^1 \frac{\ln(1+t)\ln t}{1+t}\,dt-\\
&\frac{\ln 2}{8} \int_0^1 \frac{\ln t}{1-t^2}\,dt-\frac{3\ln 2}{16}\int_0^1 \frac{\ln t}{1+t}\,dt\\
B&=\frac12\Big((A+B)-(A-B)\Big)\\
&=\frac{\ln^3 2}{12}+\frac{\text{G}\pi}{4}-\frac{1}{64}\int_0^1 \frac{\ln^2 t}{1-t}\,dt+\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt-\\
&\frac{5}{16}\int_0^1 \frac{\ln^2 t}{1+t}\,dt-\frac{5\ln 2}{16}\int_0^1 \frac{\ln t}{1+t}\,dt+\frac{\ln 2}{8}\int_0^1 \frac{\ln t}{1-t^2}\,dt\\
\end{align}
Since, for $t\neq 1$,
\begin{align}\frac{1}{1+t}&=\frac{1}{1-t}-\frac{2t}{1-t^2}\\
\frac{1}{1-t^2}&=\frac{1}{1-t}-\frac{t}{1-t^2}
\end{align}
then,
\begin{align}\text{B}&=\frac{\ln^3 2}{12}+\frac{\text{G}\pi}{4}-\frac{21}{64}\int_0^1 \frac{\ln^2 t}{1-t}\,dt+\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt-\\
&\frac{3\ln 2}{16}\int_0^1 \frac{\ln t}{1-t}\,dt+\frac{\ln 2}{2}\int_0^1 \frac{t\ln t}{1-t^2}\,dt+\frac{5}{8}\int_0^1 \frac{t\ln^2 t}{1-t^2}\,dt\\
\end{align}
In the two latter integrals perform the change of variable $\displaystyle y=t^2$,
\begin{align}\text{B}&=\frac{\ln^3 2}{12}+\frac{\text{G}\pi}{4}-\frac{1}{4}\int_0^1 \frac{\ln^2 t}{1-t}\,dt+\int_0^1 \frac{\ln t\ln(1+t)}{1+t}\,dt-\\
&\frac{\ln 2}{16}\int_0^1 \frac{\ln t}{1-t}\,dt\\
U&=\int_0^1\frac{\ln(1+t)\ln t}{1+t}\,dt\\
W&=\int_0^1\frac{\ln^2\left(\frac{t}{1+t}\right)}{1+t}\,dt\\
\end{align}
Perform the change of variable $y=\dfrac{t}{1+t}$,
\begin{align}
W&=\int_0^{\frac{1}{2}}\frac{\ln^2 t}{1-t}\,dt\\
&=\int_0^1\frac{\ln^2 x}{1-t}\,dt-\int_{\frac{1}{2}}^1\frac{\ln^2 t}{1-t}\,dt\\
\end{align}
In the latter integral perform the change of variable $y=\dfrac{1-t}{t}$
\begin{align}
W&=\int_0^1\frac{\ln^2 t}{1-t}\,dt-\int_0^1\frac{\ln^2(1+t)}{t(1+t)}\,dt\\
&=\int_0^1\frac{\ln^2 t}{1-t}\,dt+\int_0^1\frac{\ln^2(1+t)}{1+t}\,dt-\int_0^1\frac{\ln^2(1+t)}{t}\,dt\\
&=\int_0^1\frac{\ln^2 t}{1-t}\,dt+\int_0^1\frac{\ln^2(1+t)}{1+t}\,dt-\Big[\ln t\ln^2(1+t)\Big]_0^1+2\int_0^1 \frac{\ln x\ln(1+t)}{1+t}\,dt\\
&=\int_0^1\frac{\ln^2 t}{1-t}\,dt+\int_0^1\frac{\ln^2(1+t)}{1+t}\,dt+2U\\
\end{align}
On the other hand,
\begin{align}
W&=\int_0^1\frac{\left(\ln t-\ln(1+t)\right)^2}{1+t}\,dt\\
&=\int_0^1\frac{\ln^2 t}{1+t}\,dt+\int_0^1\frac{\ln^2(1+t)}{1+t}\,dx-2U\\
\end{align}
Therefore,
\begin{align}
U&=\frac{1}{4}\left(\int_0^1\frac{\ln^2 t}{1+t}\,dt-\int_0^1\frac{\ln^2 t}{1-t}\,dt\right)\\
&=-\frac{1}{4}\int_0^1\frac{2t\ln^2 t}{1-t^2}\,dt
\end{align}
Perform the change of variable $\displaystyle y=t^2$,
\begin{align}
U&=-\frac{1}{16}\int_0^1\frac{\ln^2 t}{1-t}\,dt\\
\end{align}
Therefore,
\begin{align}\text{B}&=\frac{\ln^3 2}{12}+\frac{\text{G}\pi}{4}-\frac{5}{16}\int_0^1 \frac{\ln^2 t}{1-t}\,dt-\frac{\ln 2}{16}\int_0^1 \frac{\ln t}{1-t}\,dt\\
&=\frac{\ln^3 2}{12}+\frac{\text{G}\pi}{4}-\frac{5}{16}\times 2\zeta(3)-\frac{\ln 2}{16}\times -\frac{\pi^2}{6}\\
&=\boxed{\frac{1}{12}\ln^3 2+\frac{1}{4}\text{G}\pi-\frac{5}{8}\zeta(3)+\frac{1}{96}\pi^2\ln 2}
\end{align}