1

Show that if $n$ is a positive integer, then

$1+2+...+(n-1)\equiv 0 \mod n$

My attempt:

If $n=1$, $0\equiv 0 \mod 1$

Assume that, $1+2+...+(k-1)\equiv 0 \mod k$ for some $k\in \Bbb{N}$.

$1+2+...+(k-1)+k\equiv (0+k) \mod k $

$\equiv k \mod k$

$\equiv 0 \mod k$

But I want to show that $1+2+...+(k-1)+k\equiv 0 \mod (k+1) $, how can I Do it please?

Dima
  • 2,479

3 Answers3

1

The statement is false for even $n$. For odd $n$, note that $\sum_{i=1}^{n-1}i=\frac{n(n-1)}2$.

0

Hint: Use that $$\sum_{i=1}^{n-1}i=\frac{1}{2}n(n-1)$$

0

If you don't want to use the summation formula for the first $n$ integers, you can use that for every $k\in \mathbb{Z}_n$ there exists a unique $k'\in \mathbb{Z}_n$ such that $k + k' = 0$.

Count Iblis
  • 10,366