Show that if $n$ is a positive integer, then
$1+2+...+(n-1)\equiv 0 \mod n$
My attempt:
If $n=1$, $0\equiv 0 \mod 1$
Assume that, $1+2+...+(k-1)\equiv 0 \mod k$ for some $k\in \Bbb{N}$.
$1+2+...+(k-1)+k\equiv (0+k) \mod k $
$\equiv k \mod k$
$\equiv 0 \mod k$
But I want to show that $1+2+...+(k-1)+k\equiv 0 \mod (k+1) $, how can I Do it please?