What is ther area of a diagonal in a square?
Here the "honest" calculation:
- Let $f_X(x),f_Y(y)$ be the continuous probability densities of $X,Y$ and
- $F_X(x) = P(X \leq x)$, $F_Y(y) = P(Y \leq y)$
Now you have
$$P(X=Y) = 1-P(X<Y) - P(X>Y) \stackrel{X,Y\;i.i.d.}{=}1-2P(Y>X)$$
So, we calculate the probability on the RHS:
\begin{eqnarray*} P(Y>X)
& = & \int_{x =-\infty}^{+\infty}\int_{y =x}^{+\infty}f_Y(y)f_X(x)dydx \\
& = & \int_{x =-\infty}^{+\infty}f_X(x)\int_{y =x}^{+\infty}f_Y(y)dydx \\
& \stackrel{X,Y\; i.i.d.}{=} & \int_{x =-\infty}^{+\infty}f_X(x)(1 -F_X(x))dx\\
& = & 1 - \boxed{\int_{x =-\infty}^{+\infty}f_X(x)F_X(x)dx}\\
\end{eqnarray*}
Now, note that you can show easily by partial integration that $I =\int_{x =-\infty}^{+\infty}f_X(x)F_X(x)dx = \frac{1}{2}$
Indeed we have
\begin{eqnarray*} I
& = & \int_{x =-\infty}^{+\infty}f_X(x)F_X(x)dx\\
& = & \left. (F_X(x))^2 \right|_{-\infty}^{+\infty}- \int_{x =-\infty}^{+\infty}F_X(x)f_X(x)dx\\
& = & 1-I\\
\end{eqnarray*}
All together
$$P(X=Y) = 1-2P(Y>X) = 1-2(1-I) = 1-2\cdot\frac{1}{2} = 0$$