Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-\alpha)(x-\beta)(x-\gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (\alpha+\beta+\gamma)x^2 + (\alpha\beta + \beta \gamma + \gamma \alpha)x - \alpha\beta \gamma = x^3+3x^2-2x + 1
$$
that
$$
\alpha+\beta+\gamma = -3, \quad \alpha\beta + \beta \gamma + \gamma \alpha = -2, \quad
\alpha\beta \gamma = -1.
$$
Note that
$$
-2\alpha = \alpha(\alpha\beta + \beta \gamma + \gamma \alpha) = \alpha^2(\beta+\gamma) +\alpha\beta\gamma = \alpha^2(\beta+\gamma) - 1.
$$
Thus $\alpha^2(\beta + \gamma)=1-2\alpha$.
Similarly, $\beta^2(\alpha + \gamma) = 1-2\beta$ and $\gamma^2(\alpha + \beta) = 1-2\gamma$.
Therefore,
\begin{align}
\alpha^2(\beta + \gamma) + \beta^2(\alpha + \gamma) + \gamma^2(\alpha + \beta)
&= (1-2\alpha) + (1-2\beta) + (1-2\gamma) \\
&= 3 -2(\alpha+\beta+\gamma) = 3 +6 =9.
\end{align}