Can $\,\displaystyle\int\frac{\text{Li}_2(x)^2}{x}dx\,$ be calculated
by a sum/term of polylogarithm functions and the natural logarithm and polynomials (“closed form”) ?
For the special case $\,\displaystyle\int\limits_0^1\frac{\text{Li}_2(x)^2}{x}dx\,$ see here .
Note:
Closed forms are possible for $\,\displaystyle\int\frac{\text{Li}_n(x)^2}{x}dx\,$ where $n\in\mathbb{Z}\,$ and $\,n<2\,$ , e.g. $\,\displaystyle\int\frac{\text{Li}_1(x)^2}{x}dx = -2 \text{Li}_3(1-x) - 2 \text{Li}_2(1-x) \text{Li}_1(x) - \text{Li}_1(1-x) \text{Li}_1(x)^2 + C\,$
and $\,\displaystyle\int\frac{\text{Li}_0(x)^2}{x}dx = \frac{\text{Li}_0(x)}{x} - \text{Li}_1(2-x) + C\,$ .