Find the irreducible factors of $r=1-\omega^2$ with $\omega = \frac{1}{2}(-1+\sqrt{-3})$ in $\mathbb{Z}[\omega]$
I know that i can factor $1-\omega^2$ like $(1-\omega)(1+\omega)$.
But, how i can show that $1-\omega,1+\omega$ are irreducibles in $\mathbb{Z}[\omega]$ ?