I have been trying to determine whether the following sequence is convergent or not. This is what I got:
Exercise 1: Find the $\min,\max,\sup,\inf, \liminf,\limsup$ and determine whether the sequence is convergent or not:
$X_n=\sin\frac{n\pi}{3}-4\cos\frac{n\pi}{3}$
I wrote down a few cases:
$X_1 = \sin\frac{\pi}{3}-4\cos\frac{\pi}{3}= \frac{\sqrt3-4}{2} $
$X_2 = \sin\frac{2\pi}{3}-4\cos\frac{2\pi}{3}= \frac{\sqrt3+4}{2} $
$X_3 = \sin\frac{3\pi}{3}-4\cos\frac{3\pi}{3}=4 $
$X_4 = \sin\frac{4\pi}{3}-4\cos\frac{4\pi}{3}= \frac{4-\sqrt3}{2} $
$X_5 = \sin\frac{5\pi}{3}-4\cos\frac{5\pi}{3}= \frac{4-\sqrt3}{2} $
$X_6 = \sin\frac{6\pi}{3}-4\cos\frac{6\pi}{3}= -4 $
So as found above, $\min = -4$, $\max = 4$, $\inf = -4$, $\sup = 4$, $\liminf = -4$, $\limsup = 4$.
Let's check whether its convergent or not: The sequence is bounded as stated above so lets check if its decreasing or increasing.
$X_n \geq X_{n+1}$
$\sin\frac{n\pi}{3}-4\cos\frac{n\pi}{3} \geq\sin\frac{(n+1)\pi}{3}-4\cos\frac{(n+1)\pi}{3}$
$\sin\frac{n\pi}{3} - \sin\frac{(n+1)\pi}{3} \geq -4\cos\frac{(n+1)\pi}{3} + 4\cos\frac{n\pi}{3}$
I used trigonometrical identity for $\sin\alpha+\sin\beta$ and $\cos\alpha-\cos\beta$ :
$-\cos\frac{\pi(2n+1)}{6} \geq 4\sin\frac{\pi(2n+1)}{6}$
What should I do next? I am stuck here. Thanks, and sorry if I made mistakes.