I'll give a more detailed version of Jack D'Aurizio's answer on the other question.Start with the Weierstrass product for the $\Gamma$ function
$$ \Gamma(z+1) = e^{-\gamma z}\prod_{n\geq 1}\left(1+\frac{z}{n}\right)^{-1}e^{z/n}\tag{1}.$$
By definition,
\begin{align*}
\psi(z+1) &= \frac{d}{dz} \log \Gamma(z+1) \\
&= \frac{d}{dz} \log\left( e^{-\gamma z}\prod_{n\geq 1}\left(1+\frac{z}
{n}\right)^{-1}e^{z/n}\right)\\
&= \frac{d}{dz}\left( -\gamma z + \sum_{n\geq 1}\left(\frac{z}{n} + \log \left(1+\frac{z}
{n}\right)^{-1}\right) \right)\\
&= -\gamma + \sum_{n\geq 1}\left(\frac{1}{n} - \frac{1}{z+n}\right)
\end{align*}
Now note that
\begin{align*}\gamma &= \lim_{k\rightarrow \infty} - \log(k) + \sum_{n=1}^k 1/n \\
&= \lim_{k \rightarrow \infty} -\sum_{n=1}^{k-1} \big( \log(n+1) - \log(n)\big) + \sum_{n=1}^{k} \frac{1}{n} \\
&= \sum_{n=1}^{\infty} \big( \log(n) - \log(n+1) + \frac{1}{n} \big)
\end{align*} since the inner sum is a telescoping series.
And so
\begin{align*}
\psi(z+1) &= \sum_{n\geq 1}\left[\log(n+1)-\log(n)+\frac{1}{n+z}.\right]
\end{align*}
Now he cites the identity
$$ \log(n+1)-\log(n) = \int_{0}^{+\infty}\frac{e^{-nt}-e^{-(n+1)t}}{t}\,dt$$
(by Frullani), and
$$\frac{1}{n+z} = \int_{0}^{+\infty} e^{-(n+z)t}\,dt$$
by a Laplace transform (or just by hand).
And so we get
\begin{align*}
\psi(z+1) &= \sum_{n\geq 1}\int_{0}^{+\infty}\frac{e^{-nt}-e^{-(n+1)t}}{t} + e^{-(n+z)t}\,dt\\
&=\int_{0}^{+\infty} \sum_{n\geq 1}\frac{e^{-nt}-e^{-(n+1)t}}{t} + e^{-(n+z)t}\,dt\\
&=\int_{0}^{+\infty} \left( \frac{1- e^{-t}}{t} + e^{-zt} \right)\sum_{n\geq 1} e^{-nt} \,dt \\
&=\int_{0}^{+\infty} \left( \frac{1- e^{-t}}{t} + e^{-zt} \right) \frac{e^{-t}}{1-e^{-t}} \,dt \\
&=\int_{0}^{+\infty} \left(\frac{e^{-t}}{t} + \frac{e^{-(z+1)t}}{1-e^{-t}} \right) \,dt \\
\end{align*}
and we are done (modulo whatever typos/mistakes I've made.)