How can I get that? Is it some application of the Chain Rule considering the determinant as a function of the vector function $f$?
Notation $d_{i j}$ is the cofactor of $\frac{\partial f_i}{\partial x_j}$ in the Jacobian matrix and $\partial_i$ stands for the partial derivative with respect to $x_i$
The highlighted part is just because I believe that it's a typo!!!
An important consequence of this, which i can obtain with a little bit of work is the following:
Let $f$ be an infinitely differentiable function of $x_0,x_1,..,x_n$, $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$
Let $A_i$ be the matrix with columns the partial derivatives $f_{x_0},..,f_{x_{i-1}},f_{x_{i+1}},..,f_{x_{n}}$ and let, for all $i\not = j$, $C_{ij}$ be the matrix with columns $\displaystyle f_{x_i x_j},f_{x_0},..,f_{x_n}$ excluding $f_{x_i}$ and $f_{x_j}$
Then
$\displaystyle \frac{\partial{\det(A_i)}}{{\partial x_i}} = \sum_{j<i}(-1)^j \det(C_{ij})+\sum_{j>i}(-1)^{j-1} \det(C_{ij})$