Hmm... This doesn't exactly fit your criterion in that it's not unique to the $45^∘–60^∘–75^∘$ triangle, but the central triangle here has no edges parallel to the edges of the original triangle.

The vertices are:
$$
\begin{array}{ccc}
\{0,0\} \\
\{1,0\} \\
\left\{\frac{1}{2} \left(3-\sqrt{3}\right),\frac{1}{2} \left(3-\sqrt{3}\right)\right\} \\
\left\{\frac{1}{22} \left(21-2 \sqrt{3}\right),\frac{1}{22} \left(6+\sqrt{3}\right)\right\} \\
\left\{-\frac{3}{22}
\left(-5+\sqrt{3}\right),0\right\} \\
\left\{\frac{1}{22} \left(6+\sqrt{3}\right),\frac{1}{22}
\left(6+\sqrt{3}\right)\right\} \\
\left\{\frac{1}{286} \left(237-43 \sqrt{3}\right),\frac{1}{143} \left(21-2 \sqrt{3}\right)\right\} \\
\left\{\frac{1}{286} \left(216-41 \sqrt{3}\right),\frac{1}{22} \left(6+\sqrt{3}\right)\right\} \\
\left\{\frac{1}{286} \left(174-37 \sqrt{3}\right),\frac{1}{286} \left(36+17 \sqrt{3}\right)\right\} \\
\left\{\frac{996-197 \sqrt{3}}{1430},\frac{192+43 \sqrt{3}}{1430}\right\} \\
\left\{\frac{996-197
\sqrt{3}}{1430},\frac{306+73 \sqrt{3}}{1430}\right\} \\ \left\{\frac{1}{130} \left(102-19
\sqrt{3}\right),\frac{318+31 \sqrt{3}}{1430}\right\} \\
\end{array}
$$
This is based on the three other four-self-similar-triangle dissections beyond the usual midpoints-of-the-sides one:
