I have recently been introduced to the method to find the characteristic function of a random variable that stems from transformations of other random variables. Say, for example, $X, Y$~$\mathcal{N}(0,1)$ and then I am asked to find the characteristic function of $Z:=XY$
$\hat{P}_{Z}(t)=\hat{P}_{XY}(t)=\mathbb E[e^{itXY}]$ and this is where the key point comes in, I have to take the dependence of one random variable out of the equation.
$\mathbb E[e^{itXY}]=\mathbb E[\int_{\mathbb R} e^{itXy}1_{\{y=Y\}}dy]=\int_{\mathbb R}\mathbb E[e^{itXy}1_{\{y=Y\}}]dy$ and given the independence of $1_{\{y=Y\}}$ and $e^{itXy}$:
$\int_{\mathbb R}\mathbb E[e^{itXy}1_{\{y=Y\}}]dy=\int_{\mathbb R}\mathbb E[e^{itXy}]\mathbb E[1_{\{y=Y\}}]dy=\int_{\mathbb R}\mathbb E[e^{itXy}]P(Y=y)dy$
and $\mathbb E[e^{itXy}]=\exp(-\frac{(ty)^{2}}{2})$ and therefore
$\int_{\mathbb R}\mathbb E[e^{itXy}]P(Y=y)dy=\int_{\mathbb R} \exp(-\frac{(ty)^{2}}{2})P(Y=y)dy=\mathbb E[\exp(-\frac{t^2Y^{2}}{2})]$
Am I at least on the right track? In every case of finding the characteristic function of a random variable, do I need to use the above method of partioning into $1_{\{Y=y\}}$. Any ideas on how to generally go about this are greatly appreciated.