$$ \int\limits_0^1 \prod\limits_{k=0}^{\infty}\left(1-q^{2k}\right)\left(1+q^{2k+1}\right)\left(1+q^{2k+3}\right)dq = \frac{\pi}{\sqrt{a}} \left(\frac{e^{\pi a^{5/2}/ b}-c} {e^{\pi a^{5/2}/ b}+e^{\pi a^{3/2}/ b}+c}\right) $$
I want to find the value of $a,b,c$
Sorry I have nothing much to show in effort. Thanks for any hint.