Applying IBP on your last integral followed by the substitution $u\mapsto \sin(u)$ we obtain that
\begin{align*}
I=\int_0^1\frac{\arcsin(u)}u\mathrm du&=\underbrace{\left[\log(u)\arcsin(u)\right]_0^1}_{\to 0}-\int_0^1\frac{\log(u)}{\sqrt{1-u^2}}\mathrm du\\
&=-\int_0^{\pi/2}\log(\sin u)\mathrm du
\end{align*}
There are various way to evaluate the latter integral. I will use for the sake of simplicity the Fourier Series Expansion of $\log(\sin u)$ here. Thus, we further get that
\begin{align*}
I=-\int_0^{\pi/2}\log(\sin u)\mathrm du&=-\int_0^{\pi/2}\left[-\log(2)-\sum_{k=1}^\infty \frac{\cos(2ku)}{k}\right]\mathrm du\\
&=\frac\pi2\log(2)+\int_0^{\pi/2}\sum_{k=1}^\infty \frac{\cos(2ku)}k\mathrm du\\
&=\frac\pi2\log(2)+\sum_{k=1}^\infty\frac1k\int_0^{\pi/2}\cos(2ku)\mathrm du\\
&=\frac\pi2\log(2)+\sum_{k=1}^\infty\frac1k\underbrace{\left[\frac{\sin(2ku)}{2k}\right]_0^{\pi/2}}_{=0}
\end{align*}
$$\therefore~I~=~\int_0^1\frac{\arcsin(u)}u\mathrm du~=~\frac\pi2\log(2)$$
Note that one could also invoke the Clausen Function aswell as the first derivative of the Beta Function in order to evaluate the logarithmo-trigonometric integral.