I am missing something that might be trivial in deriving the mean of the geometric distribution function by using expected value identity
$$ \sum_x x \theta (1-\theta)^{x-1}. $$
I am missing something that might be trivial in deriving the mean of the geometric distribution function by using expected value identity
$$ \sum_x x \theta (1-\theta)^{x-1}. $$
Letting $\alpha=1-\theta$, we have $$ \sum_{x=1}^\infty x \theta (1-\theta)^{x-1} = \theta\sum_{x=1}^\infty x \alpha^{x-1} = \theta \sum_{x=1}^\infty \frac{d}{d\alpha} \alpha^x = \theta\frac{d}{d\alpha}\sum_{x=1}^\infty \alpha^x. $$ Sum the geometric series. You'll get an expression that you can readily differentiate with respect to $\alpha$. Finally, put $1-\theta$ back in place of $\alpha$.
\begin{align} E(X)&=\sum_xx\theta(1-\theta)^{x-1}\\&=\theta(1-(1-\theta))^{-2}=\frac{1}{\theta} \end{align}
Here $P_X(t)=E(t^X)=(1-(1-\theta)t)^{-1}$ if $|t|<\frac{1}{1-\theta}$
So $E(X)=P'_X(t)|_{t=1}=\frac{1}{\theta}$
$M_X(t)=E(e^{tX})=(1-(1-\theta)e^t)^{-1}$ if $|t|<\log\left[\frac{1}{1-\theta}\right]$
So $E(X)=M'_X(t)|_{t=0}=\frac{1}{\theta}$