This is a non-calculus solution.
Here, we express $\sum_{k=0}^n a^kk = \sum_{k=1}^n a^k + \sum_{k=2}^n a^k + ... + \sum_{k=n}^n a^k$. (Note this is true because $k=0$ appears $0$ times, $k=1$ appears $1$ time, $k = x$ appears $x$ times, etc.)
Then, we simply use the geometric series formula to get $$\dfrac{a(1-a^n)}{1-a} + \dfrac{a^2(1-a^{n-1})}{1-a} + ... + \dfrac{a^n(1-a)}{(1-a)} = \dfrac{a - a^{n+1} + a^2 - a^{n+1} + ... + a^n - a^{n+1}}{1-a} = \dfrac{\frac{a(1-a^n)}{1-a} - na^{n+1}}{1-a} = \dfrac{a - (n+1)a^{n+1} + na^{n+2}}{(1-a)^2}$$
However, if $a = 1$, then we simply have $\dfrac{n(n+1)}{2}$.