I was asked to deduce the Cayley-Hamilton Theorem, that is to show that for all $A \in M_{n}(\mathbb{C})$ we have $\chi_{A}(A)=0$, from the following Corollary:
Let $A$ be an $n \times n$ matrix over $\mathbb{C}$. Then there exists a nonsingular $n \times n$ matrix $P$ over $\mathbb{C}$ s.t. $P^{-1}AP$ is the block matrix
\begin{bmatrix} J(k_{1},\lambda_{1}) & 0 & 0 & \dots & 0 \\ 0 & J(k_{2},\lambda_{2}) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & J(k_{m},\lambda_{m}) \end{bmatrix}
for some $m \in \mathbb{N}$, $k_{i} \in \mathbb{N} (1 \leq i \leq m)$ s.t. $n=k_{1}+\dots+k_{m}$ and some $\lambda_{i} \in \mathbb{C}$ $(1 \leq i \leq m)$, where $J(k,\alpha)$ will denote the $k \times k$ matrix with $\alpha$'s on the diagonal, $1$'s immediately below and $0$'s elsewhere. Moreover, $\chi_{A}(t)=(t-\lambda_{1})^{k_{1}}\dots(t-\lambda_{m})^{k_{m}}$.
Here is what I did so far:
Let us consider the matrix:
$P^{-1}\chi_{A}(A)P = P^{-1}(A-\lambda_{1}I)^{k_{1}}\dots(A-\lambda_{m}I)^{k_{m}}P=\underbrace{P^{-1}(A-\lambda_{1}I)PP^{-1}\dots PP^{-1}(A-\lambda_{1}I)P}_\text{$k_{1}$ factors $P^{-1}(A-\lambda_{1}I)P$}\dots \underbrace{P^{-1}(A-\lambda_{m}I)PP^{-1}\dots PP^{-1}(A-\lambda_{m}I)P}_\text{$k_{m}$ factors $P^{-1}(A-\lambda_{m}I)P$}=(P^{-1}AP - \lambda_{1}P^{-1}P)^{k_{1}}\dots (P^{-1}AP-\lambda_{m}P^{-1}P)^{k_{m}}=(P^{-1}AP-\lambda_{1}I)^{k_{1}}\dots(P^{-1}AP-\lambda_{m}I)^{k_{m}}=? $
Now, I'm kind of stuck here. I suspect that this should be equal to $0$, which if true would give me my result, but I'm not really sure how to show that, assuming that it is indeed the case. Any ideas?