For $\boldsymbol{n\ge1}$
Bernoulli's Inequality, which is proven for integer exponents in this answer and extended to rational exponents in this answer using induction, says that for $n\ge1$,
$$
1+nx\le(1+x)^n\tag1
$$
From $(1)$, we get
$$
1+x\le\lim_{n\to\infty}\left(1+\frac xn\right)^n=e^x\tag2
$$
Therefore,
$$
x^n\left(1+\frac{nh}x\right)\le\overbrace{x^n\left(1+\frac hx\right)^n}^{(x+h)^n}\le x^ne^{nh/x}\tag3
$$
where the left inequality is $(1)$ and the right inequality is the $n^\text{th}$ power of $(2)$.
Subtracting $x^n$ and dividing by $h$ gives
$$
x^n\frac nx\stackrel{h\gtrless0}\lesseqgtr\frac{(x+h)^n-x^n}{h}\stackrel{h\gtrless0}\lesseqgtr x^n\frac nx\frac{e^{nh/x}-1}{nh/x}\tag4
$$
Applying $(9)$ gives
$$
x^n\frac nx\stackrel{h\gtrless0}\lesseqgtr\frac{(x+h)^n-x^n}{h}\stackrel{h\gtrless0}\lesseqgtr x^n\frac nx\frac1{1-nh/x}\tag5
$$
Then the Squeeze Theorem yields
$$
\bbox[5px,border:2px solid #C0A000]{\frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1}}\tag6
$$
Extending to $\boldsymbol{n\lt1}$
For smaller $n$, we can use the product rule and induction. That is, suppose we know that $(6)$ holds for some $n$, then
$$
\begin{align}
\frac{\mathrm{d}}{\mathrm{d}x}x^{n-1}
&=\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac1xx^n\right)\\
&=\frac1xnx^{n-1}-\frac1{x^2}x^n\\
&=(n-1)x^{n-2}\tag7
\end{align}
$$
thus, $(6)$ holds for $n-1$.
Bounds on $\boldsymbol{\frac{e^x-1}x}$
Taking $(2)$, substituting $x\mapsto-x$, and taking reciprocals yields that for $x\lt1$,
$$
e^x\le\frac1{1-x}\tag8
$$
Combining $(2)$ and $(8)$, subtracting $1$ and dividing by $x$ gives
$$
1\stackrel{x\gtrless0}\lesseqgtr\frac{e^x-1}x\stackrel{x\gtrless0}\lesseqgtr\frac{1}{1-x}\tag9
$$