Solve for $x$ such that
$$\sin (100^\circ-x) \sin 20^\circ =\sin (80^\circ-x)\sin 80^\circ$$
First, I use the co-function formula: $$\sin 80^\circ = \cos 10^\circ \tag{1}$$
Also, $$\sin 20^\circ = 2\sin 10^\circ \cos 10^\circ \tag{2}$$
From these, I got
$$\sin(100^\circ-x)\cdot 2\sin 10^\circ =\sin (80^\circ-x) \tag{3}$$
I thought to use $$2\sin a \sin b =\cos(a-b)-\cos(a+b) \tag{4}$$ but I'm stuck.
Help me please.