This is a follow-up to this Integral involving a Gaussian and a rational function. question.
In Evaluating $\int_{\mathbb{R}}\frac{\exp(-x^2)}{1+x^2}\,\mathrm{d}x$ there are two methods for solving an integral from a product of an exponential function and a rational function. The first method is based on differentiating with respect to a parameter and solving an ODE whereas the second method is based on Fourier transforms (Parseval's identity). Now using the first method we obtained the following results.
Let $a \ge0$ and $b \ge 0$ be real numbers and $n \ge 1$ be an integer. Define: \begin{eqnarray} {\mathcal I}^{(4)}_{4 n}(a,b):= \int\limits_{-\infty}^\infty \frac{e^{-b x^4}}{a^{4 n} + x^{4 n}} dx \end{eqnarray} Clearly the quantity above satisfies the following ODE: \begin{equation} \left[(-1)^n \partial_b^n + a^{4 n}\right] {\mathcal I}^{(4)}_{4 n}(a,b) = \frac{2}{b^{1/4}} \Gamma(5/4) \quad (i) \end{equation} subject to \begin{eqnarray} \left.(-1)^j \partial_b^j {\mathcal I}^{(4)}_{4 n}(a,b)\right|_{b=0} = \frac{\pi}{2 n a^{4n-4j-1}} Csc[\frac{\pi(4j+1)}{4 n}] \quad (ii) \end{eqnarray} for $j=0,\cdots,n-1$.
Solving the ODE $(i)$ with initial conditions $(ii)$ by means of the Green's function method leads to the following solutions.
For $n=2$ we have: \begin{eqnarray} {\mathcal I}^{(4)}_{8}(a,b)&=& C_1 \sin(a^4 b) + C_2 \cos(a^4 b) - \frac{1}{a^4} \int\limits_0^b \left| \begin{array}{rr} \sin(a^4 \xi) & \cos(a^4 \xi)\\ \sin(a^4 b) & \cos(a^4 b) \end{array} \right| \frac{2}{\xi^{1/4}} \Gamma(5/4) d\xi \end{eqnarray} where \begin{eqnarray} C_1&:=&-\frac{\pi }{a^7 \left(\csc \left(\frac{\pi }{8}\right)+\sec \left(\frac{\pi }{8}\right)\right)}\\ C_2&:=&\frac{\pi \csc \left(\frac{\pi }{8}\right)}{4 a^7} \end{eqnarray}
{a, b} = RandomReal[{0, 1}, 2, WorkingPrecision -> 50];
NIntegrate[Exp[-b x^4]/(a^(8) + x^(8)), {x, -Infinity, Infinity},
WorkingPrecision -> 30]
{C1, C2} = {-(\[Pi]/(
a^7 (Csc[\[Pi]/8] + Sec[\[Pi]/8]))), (\[Pi] Csc[\[Pi]/8])/(4 a^7)};
C1 Sin[a^4 b] + C2 Cos[a^4 b] -
1/a^4 NIntegrate[(Sin[a^4 xi] Cos[a^4 b] - Cos[a^4 xi] Sin[a^4 b]) 2/
xi^(1/4) Gamma[5/4], {xi, 0, b}, WorkingPrecision -> 30]
Likewise for $n=3$ we have: \begin{eqnarray} {\mathcal I}^{(4)}_{12}(a,b)&=& C_0 e^{a^4 b} + C_+ e^{-(-1)^{1/3} a^4 b} + C_- e^{-(-1)^{-1/3} a^4 b} -\frac{1}{3 \imath \sqrt{3} a^{12}} \int\limits_0^b \left| \begin{array}{rrr} e^{a^4 \xi} & e^{-(-1)^{1/3} a^4 \xi} & e^{-(-1)^{-1/3} a^4 \xi} \\ a^4 e^{a^4 \xi} & -(-1)^{1/3} a^4 e^{-(-1)^{1/3} a^4 \xi} & -(-1)^{-1/3} a^4 e^{-(-1)^{-1/3} a^4 \xi} \\ e^{a^4 b} & e^{-(-1)^{1/3} a^4 b} & e^{-(-1)^{-1/3} a^4 b}\end{array} \right| \frac{2}{\xi^{1/4}} \Gamma(5/4) d\xi \end{eqnarray} where: \begin{eqnarray} C_0 &:=& \frac{\pi }{3 \sqrt{2} a^{11}}\\ C_+&:=&\frac{\pi }{\sqrt{6} \left(1+\sqrt[3]{-1}\right) a^{11}} \\ C_-&:=& \frac{\sqrt[6]{-1} \pi }{3 \sqrt{2} a^{11}} \end{eqnarray}
{a, b} = RandomReal[{0, 1}, 2, WorkingPrecision -> 50];
NIntegrate[Exp[-b x^4]/(a^(12) + x^(12)), {x, -Infinity, Infinity},
WorkingPrecision -> 30]
W = 3 I Sqrt[3] a^12;
{C0, Cp, Cm} = {\[Pi]/(3 Sqrt[2] a^11), \[Pi]/(
Sqrt[6] (1 + (-1)^(1/3)) a^11), ((-1)^(1/6) \[Pi])/(
3 Sqrt[2] a^11)};
C0 E^(a^4 b) + Cp E^(-(-1)^(1/3) a^4 b) + Cm E^(-(-1)^(-1/3) a^4 b) -
1/W NIntegrate[
Det[{{E^(a^4 xi), E^(-(-1)^(1/3) a^4 xi),
E^(-(-1)^(-1/3) a^4 xi)}, {a^4 E^(
a^4 xi), -(-1)^(1/3) a^4 E^(-(-1)^(1/3) a^4 xi), (-1)^(2/3)
a^4 E^((-1)^(2/3) a^4 xi)}, {E^(a^4 b),
E^(-(-1)^(1/3) a^4 b), E^(-(-1)^(-1/3) a^4 b)}}] 2/
xi^(1/4) Gamma[5/4], {xi, 0, b}, WorkingPrecision -> 30]
In general we have: \begin{eqnarray} &&{\mathcal I}^{(4)}_{4 n}(a,b) =\\ && \frac{1}{n^2} \frac{\pi}{\sqrt{2}} \frac{(-1)^{1/n} b^{3/4}}{a^{4n-4}} \sum\limits_{p=0}^{n-1} \theta_n^p e^{-(-1)^{1/n} a^4 \theta_n^p b} \left(\frac{((-1)^{(n+1)/n})^{-3/4}}{ \theta_n^{3p/4} a^3 b^{3/4}} - \frac{E_{1/4}[-(-1)^{1/n} a^4 \theta_n^p b]}{\Gamma[3/4]} \right)+\\ &&\frac{\pi}{2 n^2 a^{4 n-1}} \sum\limits_{p=0}^{n-1} {\mathfrak C}^{(p)}_n e^{-b a^4 (-1)^{1/n} \theta_n^p} \end{eqnarray} where \begin{equation} {\mathfrak C}^{(p)}_n:= \sum\limits_{j=0}^{n-1} \frac{e^{-\imath \frac{\pi}{n} j (2p+1)}}{\sin(\pi \frac{4j+1}{4 n})} \end{equation} and $\theta_n := \exp(\imath 2 \pi/n)$ and $E_n[z]:= \int\limits_1^\infty \exp(-z t)/t^n dt$ is the exponential integral function .
Clear[th]; n =.; M = 6;
th[n_] := Exp[2 Pi I/n];
{a, b} = RandomReal[{0, 1}, 2, WorkingPrecision -> 50];
l1 = Table[
NIntegrate[
Exp[-b x^4]/(a^(4 n) + x^(4 n)), {x, -Infinity, Infinity},
WorkingPrecision -> 30], {n, 1, M}];
l2 = Table[
1/n^2 Pi/Sqrt[2] ((-1)^(1/n) b^(3/4))/a^(4 n - 4)
Sum[th[n]^
p Exp[-(-1)^(1/n) a^4 th[n]^p b] (((-1)^((n + 1)/(n)))^(-3/4)/(
th[n]^(3 p/4) a^3 b^(3/4)) -
ExpIntegralE[1/4, -(-1)^(1/n) a^4 th[n]^p b]/Gamma[3/4]), {p,
0, n - 1}] +
Pi/(2 n^2 a^(4 n - 1))
Sum[Sum[
Csc[Pi (4 j + 1)/(4 n)] Exp[-((I Pi )/n) j (2 p + 1) ], {j, 0,
n - 1}] Exp[-b a^4 (-1)^(1/n) th[n]^p], {p, 0, n - 1}], {n,
1, M}];
{l1, Re[N[l2, 30]]} // MatrixForm
My question would be can we derive those results in a different way, for example using the Parseval's identity? Another question is how about the case when the exponents in the denominator of the integrand are not an integer multiple of four, how do we proceed in that case?