I want to find the example of $$f\left(\bigcap\limits_{i\in I}A_i\right)\subset \bigcap\limits_{i\in I}f\left(A_i\right).$$(proper subset).
I have find the example of that, but $$f\left(\bigcap\limits_{i\in I}A_i\right)= \bigcap\limits_{i\in I}f\left(A_i\right),$$ like this
\begin{eqnarray} f:\mathbb{Z}&\to& \mathbb{Z}\newline x&\mapsto& x^2 \end{eqnarray}
$A_1=\{2,3,5,7,11\}$
$A_2=\{1,2,3,4,5,6\}$
$A_3=\{1,3,5,7,9,11,13\}$
$\bigcap\limits_{i=1}^3A_i=\{3,5\}$
$f\left(\bigcap\limits_{i=1}^3A_i\right)=\{9,25\}$
$f(A_1)=\{4,9,25,49,121\}$
$f(A_2)=\{1,4,9,16,25,36\}$
$f(A_3)=\{1,9,25,49,81,121,169\}$
$\bigcap\limits_{i=1}^3 f(A_i)=\{9,25\}$
So,
$\bigcap\limits_{i=1}^3 f(A_i) = f\left(\bigcap\limits_{i=1}^3A_i\right)$.
Now I want to find the example of $$f\left(\bigcap\limits_{i\in I}A_i\right)\subset \bigcap\limits_{i\in I}f\left(A_i\right).$$(proper subset).
Can anyone help me to find it?