So my previous question states that: We are given the sequence $_{n}= 6^{({2}^n)} + 1$. We must prove that the elements of this sequence are pairwise co-prime, i.e prove that if m ≠ n then $(_{m},_{n}) = 1$.
I previously proved that $k_n | k_{n+1} - 2$
Then using answers I got on my previous question I was able to show that if $p | k_n$ then it follows that $p | k_{n+1} -2$. Using this I could say that that if $p|k_{n+1}$ then $p|(k_{n+1} - (k_{n+1} -2)$. This means the only prime that could divide $k_n$ and $k_{n+1}$ is $2$, however all the terms in the sequence are odd so therefore $gcd(k_n,k_{n+1})=1$.
This therefore proves that every pair of numbers in the sequence are coprime however I'm struggling to extend it to show every element is coprime so I need to show $gcd(k_m,k_n)=1$.
All help is very much appreciated as always cheers.