From this question I'm trying to check if the inverse sentence works:
If $\phi(d)|\phi(n)$ then $d|n$
So I know that
If $\phi(d)|\phi(n)$ then $\phi(n)=k\phi(d)$
Then
$$ \phi(d)=d(1-1/p_1)(1-1/p_2)...(1-1/p_r)$$ $$ k\phi(d)=k[d(1-1/p_1)(1-1/p_2)...(1-1/p_r)]\not \not = kd$$ Then $$d \not| n$$
If is correct please let me know, if not, any hint or help will be really appreciated.