0

Prove that $\displaystyle \sum_{r=0}^n {n+r\choose r} \frac{1}{2^{r}}= 2^{n}$

what i try

$$\binom{n}{n}+\binom{n+1}{1}\frac{1}{2}+\binom{n+2}{2}\frac{1}{2^2}+\binom{n+3}{3}\frac{1}{2^3}+\cdots +\binom{n+n}{n}\frac{1}{2^n}$$

$$\binom{n}{n}+\binom{n+1}{n}\frac{1}{2}+\binom{n+2}{n}\frac{1}{2^2}+\binom{n+3}{n}\frac{1}{2^3}+\cdots +\binom{n+n}{n}\frac{1}{2^n}.$$

coefficient of $x^n$ in

$$(1+x)^n+(1+x)^{n+1}\frac{1}{2}+(1+x)^{n+2}\frac{1}{2^2}+\cdots\cdots +(1+x)^{2n}\frac{1}{2^n}.$$

How do i solve ithelp me plesse

jacky
  • 5,194

1 Answers1

2

We have

$$S = \sum_{r=0}^n {n+r\choose r} \frac{1}{2^r} = \sum_{r\ge 0} {n+r\choose n} \frac{1}{2^r} [[0\le r\le n]] \\ = \sum_{r\ge 0} {n+r\choose n} \frac{1}{2^r} [z^n] \frac{z^r}{1-z} = [z^n] \frac{1}{1-z} \sum_{r\ge 0} {n+r\choose n} \frac{1}{2^r} z^r \\ = [z^n] \frac{1}{1-z} \frac{1}{(1-z/2)^{n+1}} = 2^{n+1} [z^n] \frac{1}{1-z} \frac{1}{(2-z)^{n+1}} \\ = (-1)^n 2^{n+1} [z^n] \frac{1}{z-1} \frac{1}{(z-2)^{n+1}}.$$

This is

$$(-1)^n 2^{n+1} \mathrm{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{z-1} \frac{1}{(z-2)^{n+1}}.$$

Resides sum to zero. The residue at infinity is zero by inspection. The residue at $z=1$ is $- 2^{n+1}.$ For for the residue at $z=2$ we require

$$\frac{1}{n!} \left( \frac{1}{z^{n+1}} \frac{1}{z-1} \right)^{(n)} \\ = \frac{1}{n!} \sum_{q=0}^n {n\choose q} (-1)^q \frac{(n+q)!}{n!} \frac{1}{z^{n+q+1}} (-1)^{n-q} (n-q)! \frac{1}{(z-1)^{n-q+1}} \\ = (-1)^n \sum_{q=0}^n {n+q\choose q} \frac{1}{z^{n+q+1}} \frac{1}{(z-1)^{n-q+1}}.$$

Evaluate at $z=2$ with the factor in front

$$(-1)^n 2^{n+1} (-1)^n \sum_{q=0}^n {n+q\choose q} \frac{1}{2^{n+q+1}} = \sum_{q=0}^n {n+q\choose q} \frac{1}{2^{q}} = S.$$

This yields

$$S - 2^{n+1} + S = 0$$

or

$$\bbox[5px,border:2px solid #00A000]{ S = 2^n.}$$

This problem is a special case of MSE 538309.

Addendum.

An alternate approach uses

$$S = \sum_{q=0}^n {n+q\choose n} \frac{1}{2^q} = \sum_{q=0}^n \frac{1}{2^q} [z^n] (1+z)^{n+q} = [z^n] (1+z)^n \sum_{q=0}^n \frac{1}{2^q} (1+z)^q \\ = [z^n] (1+z)^n \frac{1-(1+z)^{n+1}/2^{n+1}}{1-(1+z)/2} = [z^n] (1+z)^n \frac{2-(1+z)^{n+1}/2^{n}}{1-z} \\ = 2\times 2^n - [z^n] (1+z)^{2n+1} \frac{1}{2^n} \frac{1}{1-z} \\ = 2\times 2^n - \frac{1}{2^n} \sum_{q=0}^n {2n+1\choose q} = 2\times 2^n - \frac{1}{2^n} \frac{1}{2} 2^{2n+1} = 2^n.$$

Marko Riedel
  • 61,317